北京市平谷区 2019 年中考统一练习（一）

数学试卷参考答案及评分标准

一，选择题（本题共 16 分，每小题 2 分）

题号	1	2	3	4	5	6	7	8
答案	C	C	B	D	B	A	A	B

二，填空题（本题共 16 分，每小题 2 分）
9．正方；
10．$x>-1$ ；
11．甲；
12．答案不唯 如 $B D=D C$ ；
13．$\left\{\begin{array}{l}2.5 x+2 y=20 \\ x+y+11=20\end{array}\right.$ ；
14．$a^{2}-b^{2}=(a+b)(a-b)$ ；
15． $2 \sqrt{3}$ ；
16．$(4,0)$ ．

三，解答题（本题共 68 分，第 17－21题，每小题 5 分，第 22－27题，每小题 6 分，第 28 题 7分）解答应写出文字说明，演算步骤或证明过程．
17．（1）如图；

（2）同位角相等，两直线平行；
等边对等角。
18．解：原式 $=2 \times \frac{\sqrt{3}}{2}+1-2 \sqrt{3}+\sqrt{3}-1$ ．

19．解：由（1）得 $x<3$

$\therefore 1<x<3$ ．

$$
=(k-3)^{2}
$$

$(k-3))^{2} \geq 0$ ，
．方程总有两个实数根。
（2）$\because x=\frac{-(k-1) \pm \sqrt{(k-3)^{2}}}{2}$ ，
$\therefore x_{1}=-1, x_{2}=2-k$ ．
\because 方程有一个根为正数，
$\therefore 2-k>0$
$k<2$ ．

21．（1）$k=4$ ；

（2）当直线 $A B$ 经过点 $A(2,-2),(0,1)$ 时区域 W 内恰有 1 个整点，
$\therefore a=\frac{1}{2}$ ．
当直线 $A B$ 经过点 $A(2,-2),(1,1)$ 时区域 W 内没有整点，
$\therefore a=1$ ．
\therefore 当 $\frac{1}{2} \leq a<1$ 时区域 W 内恰有 1 个整点．
22．（1）证明：$\because A B=A C$ ，点 D 是 $B C$ 边的中点，
$\therefore A D \perp B C$ 于点 D ．
$\because A E / / B C, C E / / A D$ ，
\therefore 四边形 $A D C E$ 是平行四边形。
\therefore 平行四边形 $A D C E$ 是矩形。
（2）解：过点 E 作 $E F \perp A C$ 于 F
$\because A B=10$ ，
$\therefore A C=10$ ．
\because 对角线 $A C$ ，DE 㝔于点 O ，
$\therefore D E=A C=10$ ．
－•OEFF…．．．．．．．．．．．．．．．． 4

$\because \sin \angle C O E=\frac{4}{5}$ ，
$\therefore E F=4$
.5
$\therefore O F=3$ ．
$\because O E=O C=5$ ，
$\therefore C F=2$ ．
$\therefore C E=2 \sqrt{5}$ ．
23．（1）如图；

（2） $31 \leq x<34$ 这组的圆心角度数是 78 度，$\ldots \ldots \ldots$
如图（画图1分，数据1分）；．．． 4
（3）统计表中中位数 m 的值是 36 ；；．．． 5
（4）答案不唯一，如：费尔兹奖得主获奖时年龄集中在 37 岁至 40 岁．$\cdots \cdots \cdots \cdots \cdots \cdots \cdots 6$

24．（1）证明：$\because A C$ 切 $\odot O$ 于点 A ，
$\therefore \angle B A C=90^{\circ}$ ．
连接 $A D$ ．
\because 点 E 是 $B D$ 的中点，
$\therefore \angle B A E=\angle D A E$ ．
$\because A B$ 是 $\odot O$ 的直径，
$\therefore \angle A D B=90^{\circ}$ ．
$\because \angle C A D+\angle D A B=\angle D A B+\angle B=90^{\circ}$ ，
$\therefore \angle C A D=\angle B$ ．
$\because \angle C A D+\angle D A E=\angle B+\angle B A E$ ，
$\therefore \angle C A F=\angle C F A$ ．
$\therefore A C=C F$ ．
（2）解：$\because A B=4, ~ A C=3$ ，
$\therefore B C=5$ ．
$\because A C=C F=3$ ，
$\because \cos B=\frac{B D}{A B}=\frac{A B}{B C}=\frac{4}{5}$ ，
$\therefore B D=\frac{16}{5}$ ．
$\therefore A D=\frac{12}{5}, D F=\frac{6}{5}$ ．
$\therefore \tan \angle B A E=\tan \angle D A E=\frac{1}{2}$
25．（1）3．0；
（2）如图；

$$
3
$$

－

（3） 1.2 或 1.6 或 3．0。

（2）$\because y=x^{2}-2 m x+m^{2}-3=(x-m)^{2}-3$ ，
\therefore 抛物线顶点坐标为 $(m,-3)$ ．
\because 抛物线经过点 A, B 时，且 $A B / / x$ 轴，
\therefore 抛物线对称轴为 $x=m=2$ ．3
\therefore 抛物线的表达式为 $y=x^{2}-4 x+1$ ； 4
（3） $0<m \leq 1$ ． $\cdot 6$

27．（1）$\angle B C D=120^{\circ}-\alpha$ ．
$\cdot 1$
（2）解：
方法一：延长 $B A$ 使 $A E=B C$ ，连接 $D E$ 。 2

由（1）知 $\triangle A D C$ 是等边三角形，
$\therefore A D=C D$ ．
$\because \angle D A B+\angle D C B=\angle D A B+\angle D A E=180^{\circ}$ ，
$\therefore \angle D A B=\angle D A E$ ．
$\therefore \triangle A D E \cong \triangle C D B . \quad \cdots \cdots \cdots \cdots \cdots \cdots \cdots 3$
$\therefore B D=B E$ ．
$\therefore B D=A B+B C$ ．
.4
方法二：延长 $A B$ 使 $A F=B C$ ，连接 $C F$ ．
$\angle B D C=\angle A D E$ ．
$\because \angle A B C=120^{\circ}$ ，
$\therefore \angle C B F=60^{\circ}$ ．
$\therefore \triangle B C F$ 是等边角形
$\therefore B C=C E$
$\because \angle D C A=\angle B C F=60^{\circ}$ ，
$\therefore \angle D C A+\angle A C B=\angle B C F+\angle A C B$ ．
即 $\angle D C B=\angle A C F$ ．
$\because C A=C D$ ，
$\therefore \triangle A C F \cong \triangle D C B$ ．

$\therefore B D=A F$ ．
$\therefore B D=A B+B C$ ． 4
（3）$A C, B D$ 的数量关系是：$A C=\frac{\sqrt{3}}{2} B D$ ；
位置关系是：$A C \perp B D$ 于点 P ．
\qquad

