2023 北京丰台高三(上)期中

学 数

2023.11

— 、	选择题共10小题,	每小题 4分, 共 40分. 在每小题列出的四个选项中, 选出符合题目要求
的一	-项。	

1.	已知集合 $P = \{x \mid -1 \le x \le 1\}$,	$Q = \left\{ x \in \mathbf{N} \mid \frac{x}{x - 2} \le 0 \right\}$	},则 <i>P</i> ∩ <i>Q</i> =
	$(A) \{x \mid 0 \le x \le 1\}$	(B) {:	$x \mid -1 \leqslant x \leqslant 0$

(C) $\{0,1,2\}$

(D) $\{0,1\}$

2. 下列函数中, 既是奇函数又在定义域上单调递增的是

(A) $y = 2^x$ (B) $y = \ln |x|$

(C) $y = x^3$ (D) $y = \tan x$

3. 在复平面上,复数 $\frac{1+ai}{2-i}$ 所对应的点在第二象限,则实数 a 的值可以为

(B) 1 $(\mathbf{A}) - \frac{1}{2}$ (C) 2 (D) 3

4. 已知平面向量a,b满足|a = 2, |b = 1, 且 $a \cdot b = 1$, 则|a + 2b = 1

(A) 12 (B) 4

(C) $2\sqrt{3}$ (D) 2

5. 在 $\triangle ABC$ 中, $a\cos B - \frac{\sqrt{3}}{2}b = c$,则A =

(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{3}$

(C) $\frac{2\pi}{3}$ (D) $\frac{5\pi}{6}$

6. 数列 $\{a_n\}$ 满足 $a_1 = \frac{1}{2}, a_{n+1} = \frac{1+a_n}{1-a_n} (n \in \mathbf{N}^*)$,则 $a_{2023} =$

(A) $\frac{1}{2}$ (B) 3

(D) $-\frac{1}{3}$ (C) -2

7. 设定义在 R 上的函数 y = f(x), 其导函数为 f'(x), 则"函数 f(x) 在 [a,b] 上单调递增"是 " $x \in (a,b)$ 时,导函数 f'(x) > 0 "的

- (A) 充分而不必要条件
- (B) 必要而不充分条件

(C) 充分必要条件

- (D) 既不充分也不必要条件
- 8. 将函数 $f(x) = \sin 2x$ 的图象向左平移 φ 个单位后得到函数 g(x) 的图象,若函数 y = f(x) + g(x) 的最大值为 a ,则 a 的值不可能为
 - (A) 1

(B) $\sqrt{2}-1$

(C) 2

- (D) $\sqrt{2} + 1$
- 9. 分贝(dB)、奈培(Np)均可用来量化声音的响度,其定义式分别为 $1dB = 10lg \frac{A}{A_o}$,

 $1\text{Np} = \frac{1}{2} \ln \frac{A}{A_0}$, 其中 A 为待测值, A_0 为基准值. 如果 $1\text{dB} = t \text{Np}(t \in \mathbf{R})$, 那么 $t \approx$ (参考数据:

 $\lg e \approx 0.4343$)

(A) 8.686

(B) 4.343

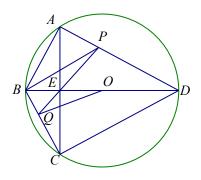
(C) 0.8686

- (D) 0.115
- 10. 如图,已知 BD 是圆 O 的直径,AC 是与 BD 垂直的弦,且 AC 与 BD 交于点 E,点 P 是线段 AD 上的动点,直线 PE 交 BC 于点 O. 当 $\overrightarrow{PD} \cdot \overrightarrow{PB}$ 取得最小值时,下列结论中一定成立的是
 - (A) $OQ \perp BC$

(B) $OP \perp AD$

(C) $PQ \parallel AB$

(D) *OP || AC*



- 二、填空题共5小题,每小题5分,共25分。
- 11. 函数 $f(x) = \frac{\sqrt{x+3}}{x+1}$ 的定义域为____.
- 12. 已知平面向量 $\mathbf{a} = (1,2), \mathbf{b} = (2,-1)$,若 $m\mathbf{a} + \mathbf{b} = \mathbf{a} \mathbf{b}$ 共线,则m的值为 .
- 13. 能说明命题 "对于任意 $s,t\in \mathbf{R}$, $[\max\{s,t\}]^2=\max\{s^2,t^2\}$ " 为假命题的一组整数 s,t 的值依次为____

 $(\max\{a,b\}$ 表示实数a,b中的最大值)

14. 己知函数 $f(x) = \begin{cases} \frac{1}{x-a}, & x < a, \\ x^2 - 2x, x \geqslant a, \end{cases}$ 其中 $a \in \mathbf{R}$.

- (I) 当 a = 0 时,函数 f(x) 的单调递增区间为 ;
- (II) 若函数 f(x) 的值域为 A, 存在实数 $m \notin A$, 则 a 的取值范围为 .
- 15. 已知数列 $\{a_n\}$ 满足 $a_1 = a, a_{n+1} = \sqrt{\frac{1}{2}a_n^2 + 2} (n \in \mathbf{N}^*)$,则
 - ① $\exists a = -1 \text{ th}$, 存在 $k \in \mathbb{N}^*$, 使得 $a_k = 2$;
 - ② 当 a=1 时, $\{a_n\}$ 为递增数列,且 $a_n < 2$ 恒成立;
 - ③ 存在 $a \in \mathbf{R}$, 使得 $\{a_n\}$ 中既有最大值,又有最小值;
 - ④ 对任意的 $a \in \mathbf{R}$,存在 $n_0 \in \mathbf{N}^*$,当 $n > n_0$ 时, $|a_n 2| < \frac{1}{2023}$ 恒成立.

其中,正确结论的序号有___.

- 三、解答题共6小题,共85分。解答应写出文字说明,演算步骤或证明过程。
- 16. (本小题 14分)

在
$$\triangle ABC$$
中, $a=5$, $b=11$, $\cos C=\frac{3}{5}$.

- (I) 求△*ABC*的面积;
- (II) 求 c 及 $\sin A$ 的值.
- 17. (本小题 14分)

在各项均为正数的等比数列 $\{a_n\}$ 中, S_n 为其前n项和,且 $a_3-a_1=3$, $S_3=7$.

- (I) 求*a*_n和*S*_n;
- (II) $\mbox{$\ensuremath{\mbox{ψ}}$} b_n = \log_2(S_n + 1)$, $\mbox{$\ensuremath{\vec{\iota}}$} T_n = b_1 + b_2 + \dots + b_n$, $\mbox{$\ensuremath{\vec{\tau}}$} T_n$.
- 18. (本小题 13分)

已知函数 $f(x) = \sin x(a + \cos x)$.

- (I) 当a = 0时,求曲线y = f(x)在(0, f(0))处的切线方程;
- (II) 若 f(x) 在 $x = \frac{\pi}{3}$ 处取得极值,求实数 a 的值及函数 f(x) 的单调区间.

19. (本小题 14分)

设函数 $f(x) = \sqrt{3} \sin \omega x \cdot \cos \omega x + \cos^2 \omega x$ $(0 < \omega < 2)$,从条件①、条件②、条件③这三个条件中选择一个作为已知.

- (I) 求函数 f(x) 的解析式;
- (II) 求 f(x) 在区间 $[0,\frac{\pi}{2}]$ 上的最小值.

条件①: 函数 f(x) 的图象经过点 $(\frac{5\pi}{12}, \frac{1}{2})$;

条件②: 函数 f(x) 的图象的相邻两个对称中心之间的距离为 $\frac{\pi}{2}$;

条件③: 函数 f(x) 的图象的一条对称轴为 $x = \frac{\pi}{6}$.

注:如果选择多个符合要求的条件分别解答,按第一个解答给分.

20. (本小题 15分)

已知函数 $f(x) = \ln(x+1)$, g(x) = kx.

- (I) 当k = 1时,求函数h(x) = f(x) g(x)的最大值;
- (II) 若关于x的不等式 $f(x) \leq g(x)$ 恒成立,求实数k的值.

21. (本小题 15分)

对于一个 n 行 n 列 的 数 表 $A_{n\times n}$ $(n\geq 2)$, 用 $a_{i,j}$ 表 示 数 表 中 第 i 行 第 j 列 的 数 , 其 中 $a_{i,j}\in \mathbf{Z}$ $(i,j=1,2,\cdots,n)$,且数表 $A_{n\times n}$ 满足以下两个条件:

- ② $a_{i+1,i+1} = a_{i,j}$, 规定 $a_{i+1,n+1} = a_{i+1,1}$ $(i = 1, 2, \dots, n-1, j = 1, 2, \dots, n)$.
- (I) 已知数表 $A_{3\times 3}$ 中, $a_{1,1}=3$, $a_{1,2}=-1$. 写出 $a_{1,3}$, $a_{2,2}$, $a_{3,1}$ 的值;
- (II) 若 $a_{1,1}+\cdots+a_{1,k}-k=\max\left\{a_{1,1}-1,a_{1,1}+a_{1,2}-2,\cdots,a_{1,1}+\cdots+a_{1,n}-n\right\}(k\in\{1,2,\cdots,n\})$,其中 $\max M$ 表示数集 M 中最大的数. 规定 $a_{1,n+1}=a_{1,1}$.证明: $a_{1,k+1}-1\leqslant 0$;
- (III) 证明: 存在 $m \in \{1,2,\cdots,n\}$,对于任意 $l \in \{1,2,\cdots,n\}$,有 $a_{m,1} + a_{m,2} + \cdots + a_{m,l} \leq l$.

一、选择题共10小题,每小题4分,共40分.

题号	1	2	3	4	5	6	7	8	9	10
答案	D	С	D	С	D	С	В	D	A	В

二、填空题共5小题,每小题5分,共25分.

11.
$$[-3,-1) \cup (-1,+\infty)$$

$$12. -1$$

14.
$$[1,+\infty)$$
, $(2,+\infty)$

三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.

16. (本小题 14分)

解: (I) 因为在
$$\triangle ABC$$
中, $\cos C = \frac{3}{5}$, 又 $0 < C < \pi$,

由正弦定理
$$\frac{a}{\sin A} = \frac{c}{\sin C}$$
, 12 分

得
$$\sin A = \frac{a \sin C}{c} = \frac{5 \times \frac{4}{5}}{4\sqrt{5}} = \frac{\sqrt{5}}{5}$$
.

17. (本小题 14分)

解: (I) 设等比数列 $\{a_n\}$ 的公比为q(q>0).

$$a_1 + a_1 q + a_1 q^2 = 7$$
,2

18. (本小题 13分)

解:(I)由题意得, $f(x) = \sin x \cos x$,

所以
$$f'(x) = \cos x \cos x + \sin x(-\sin x) = \cos 2x$$
,

所以
$$f'(0)=1$$
,

$$\nabla f(0) = 0$$
,

所以曲线 y = f(x) 在点 (0, f(0)) 处的切线方程为 y = x.4 分

(II) 由题意得, $f'(x) = \cos x(a + \cos x) + \sin x(-\sin x)$

$$= a\cos x + \cos^2 x - \sin^2 x$$
$$= a\cos x + \cos 2x . \qquad \dots 6$$

因为 f(x) 在 $x = \frac{\pi}{3}$ 处取得极值,

所以
$$f'(\frac{\pi}{3}) = 0$$
,

$$\mathbb{RI} a\cos\frac{\pi}{3} + \cos\frac{2\pi}{3} = 0,$$

解得a=1.

.....8分

经检验a=1符合题意.

故
$$f'(x) = \cos x + \cos 2x$$
,

.....9分

令
$$f'(x) > 0$$
, $\cos x + \cos 2x > 0$, 解得 $-\frac{\pi}{3} + 2k\pi < x < \frac{\pi}{3} + 2k\pi$,

令
$$f'(x) < 0$$
, $\cos x + \cos 2x < 0$, 解得 $\frac{\pi}{3} + 2k\pi < x < \frac{5\pi}{3} + 2k\pi$,

19. (本小题 14分)

解: (I) $f(x) = \sqrt{3} \sin \omega x \cos \omega x + \cos^2 \omega x$

$$=\frac{\sqrt{3}}{2}\sin 2\omega x + \frac{\cos 2\omega x + 1}{2}$$

选条件①

由条件①可知,函数 f(x) 的图象经过点 $(\frac{5\pi}{12}, \frac{1}{2})$,

所以
$$f(\frac{5\pi}{12}) = \frac{1}{2}$$
,

$$\mathbb{E} \sin(2\omega \times \frac{5\pi}{12} + \frac{\pi}{6}) + \frac{1}{2} = \frac{1}{2},$$

得
$$\sin(\frac{5\omega\pi}{6} + \frac{\pi}{6}) = 0$$
,

所以
$$\frac{5\omega\pi}{6} + \frac{\pi}{6} = k\pi$$
,

解得
$$\omega = -\frac{1}{5} + \frac{6}{5}k$$
 , $k \in \mathbb{Z}$ 4 分

因为 $0 < \omega < 2$,

选条件②

由条件②可知,函数 f(x) 的图象的相邻两个对称中心之间的距离为 $\frac{\pi}{2}$,

所以函数 f(x) 的最小正周期为 $T=\pi$, ·········4 分

所以 $\omega=1$. ········5 分

选条件③

由条件③可知,函数 f(x) 的图象的一条对称轴为 $x = \frac{\pi}{6}$,

所以 $2\omega \times \frac{\pi}{6} + \frac{\pi}{6} = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$.

解得
$$\omega = 1 + 3k$$
, $k \in \mathbb{Z}$. ········4 分

 $(II) \oplus 0 \leqslant x \leqslant \frac{\pi}{2},$

得
$$\frac{\pi}{6} \le 2x + \frac{\pi}{6} \le \frac{7\pi}{6}$$
,8 分

则
$$-\frac{1}{2} \leqslant \sin(2x+\frac{\pi}{6}) \leqslant 1$$
,

 $\stackrel{\text{def}}{=} 2x + \frac{\pi}{6} = \frac{7\pi}{6}$, $\mathbb{E}[x = \frac{\pi}{2}]$ $\mathbb{E}[x = \frac{\pi}{2}]$ f(x) 取得最小值 0. ……14分 20. (本小题 15分) 解: (I) 当k=1时, $h(x)=f(x)-g(x)=\ln(x+1)-x$,1 分 函数 h(x) 的定义域为 $(-1,+\infty)$,2 分 $h'(x) = \frac{1}{x+1} - 1 = \frac{-x}{x+1}$,3分 $\diamondsuit h'(x) = 0$, 得 x = 04分 所以 (-1,0)0 $(0,+\infty)$ h'(x)极大值 h(x).....6分 所以 $h(x) \leq h(0) = 0$, 即函数 h(x) 的最大值为 0.7分8 分 易知 h(0) = 0 , $h(1) = \ln 2 - k \le 0$, 所以 $k \ge \ln 2 > 0$ 9 分 $h'(x) = \frac{1}{x+1} - k = \frac{-kx+1-k}{x+1}$10 分 所以 $(-1,\frac{1-k}{k}) \qquad \frac{1-k}{k} \qquad (\frac{1-k}{k},+\infty)$ $+ \qquad 0 \qquad$ h(x)极大值12 分 而 $h(\frac{1-k}{k}) > h(0) = 0$, 与题设不符, 舍去.15 分 因此,k=1.

当 k > 1 时, h'(0) = 1 - k < 0, 故 h(x) 在 $(\frac{1-k}{k}, 0)$ 上单调递减

另解: 当k=1时,由(I)得 $h(x) \leq 0$ 恒成立

.....12 分