2023 北京朝阳高一(上)期末

数学

2023.1

(考试时间 120 分钟 满分 150 分)

本试卷分为选择题(共 50 分)和非选择题(共 100 分)两部分考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.

第一部分(选择题 共50分)

_	、选择题共 10 小题	,每小题 5 分,	共50分.	在每小题列	出的四个选项中	中,选出符合题目
要	求的一项.					
1.						
A.	$a^2 > b^2$	$B. \ ac^2 > bc^2$	(C. $a^3 > b^3$	D. $\frac{1}{a^2}$	$\frac{1}{2} < \frac{1}{b^2}$
2.	若角 θ 满足 $\cos\theta$ <0,1	$an \theta < 0$,则角 θ	9是()			
Δ	笋——象阻角	R 第一象限角	(7 第二角阻角	D 笋	加 象

- 3. 下列函数中,在其定义域上单调递增且值域为**R**的是()
- A. $y = 2^x$ B. $y = (x-1)^3$ C. $y = x + \frac{1}{x}$ D. $y = |\ln x|$
- 4. 设集合 $A = \left\{ \alpha \middle| \alpha = k\pi + \frac{\pi}{2}, k \in \mathbf{Z} \right\}$,集合 $B = \left\{ \alpha \middle| \alpha = 2k\pi \pm \frac{\pi}{2}, k \in \mathbf{Z} \right\}$,则 A 与 B 的关系为()
- A. A = B B. $A \subsetneq B$ C. $B \subsetneq A$ D. $A \cap B = \emptyset$
- 5. 声强级 $L_{\rm l}$ (单位: dB)出公式 $L_{\rm l}=10\lg\left(\frac{I}{10^{-12}}\right)$ 给出,其中 I 为声强(单位: W / m 2).若平时常人

交谈时的声强约为 10^{-6} W/m²,则声强级为()

- A. 6dB B. 12dB C. 60dB D. 600dB
- 6. 已知a > 0, b > 0, 则" $a + b \le 2$ "是" $ab \le 1$ "的 ()
- A. 充分不必要条件 B. 必要不充分条件
- C. 充分必要条件 D. 既不充分也不必要条件
- 7. 已知函数 $f(x) = \frac{3^x 1}{3^x + 1}$, 有如下四个结论:
- ①函数 f(x) 在其定义域内单调递减;
- ②函数 f(x) 值域为(0,1);
- ③函数 f(x) 的图象是中心对称图形;

④方程 f(x) = -x + 1有且只有一个实根.

其中所有正确结论 序号是(

- A. (1)(2)
- B. (2)(3)

C. (1)(3)

- D. (3)(4)
- 8. 已知角 α 为第一象限角,且 $\sin \frac{\alpha}{2} > \cos \frac{\alpha}{2}$,则 $\sin \frac{\alpha}{2}$ 的取值范围是(
- A. $\left(-\frac{\sqrt{2}}{2},0\right)$ B. $\left(-1,-\frac{\sqrt{2}}{2}\right)$ C. $\left(0,\frac{\sqrt{2}}{2}\right)$
- D. $\left(\frac{\sqrt{2}}{2},1\right)$
- 9. 某厂以x千克/小时的速度匀速生产某种产品(生产条件要求 $1 \le x \le 10$),每小时可获得利润
- $100\left(3x+1-\frac{2}{x}\right)$ 元,要使生产 100 千克该产品获得的利润最大,该厂应选取的生产速度是(
- A. 2 千克/小时

B. 3 千克/小时

C. 4 千克/小时

- D.6 千克/小时
- 10. 定义在**R**上的偶函数 y = f(x) 满足 f(x-1) = -f(x), 且在[0,1]上单调递增,

$$a = f\left(\frac{2023}{2}\right), b = f(\ln\sqrt{2}), c = f(2022), 则 a, b, c$$
的大小关系是(

A. a > b > c

B. a > c > b

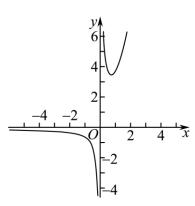
C. b > c > a

D. c > b > a

第二部分(非选择题 共100分)

- 二、填空题共6小题,每小题5分,共30分.
- 11. 已知集合 $A = \{x \mid -2 < x < 0\}$,集合 $B = \{x \mid 0 \le x \le 1\}$,则 $A \cup B =$
- 12. 已知角 $\alpha \in \left(\pi, \frac{3}{2}\pi\right)$, 若 $\sin(\pi + \alpha) = \frac{1}{2}$, 则 $\alpha = \underline{\qquad}$; $\sin\left(\frac{\pi}{2} + \alpha\right) = \underline{\qquad}$.
- 13. 设a > 1且b > 1, $\log_2 a \cdot \log_2 b = 1$,则 $\log_2(ab)$ 的最小值为
- 14. 设函数 f(x) 的定义域为 I, 如果 $\forall x \in I$, 都有 $-x \in I$, 且 f(-x) = f(x), 已知函数 f(x) 的最大值为
- 2,则 f(x) 可以是
- 15. 已知下列五个函数: y = x, $y = \frac{1}{x}$, $y = x^2$, $y = \ln x$, $y = e^x$, 从中选出两个函数分别记为 f(x) 和 g(x),

若 F(x) = f(x) + g(x) 的图象如图所示,则 F(x) =



- 16. 已知函数 $f(x) = \begin{cases} x^3, x > a \\ |x|, x \le a \end{cases}$, 给出以下四个结论:
- ①存在实数 a,函数 f(x) 无最小值;
- ②对任意实数 a, 函数 f(x) 都有零点;
- ③当 $a \ge 0$ 时,函数f(x) (0,+∞)上单调递增:
- ④对任意 $a \in (0,1)$, 都存在实数 m, 使方程 f(x) = m 有 3 个不同的实根.

其中所有正确结论的序号是 .

- 三、解答题共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.
- 17. 已知角 α 的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点 $P\left(-\frac{3}{5},\frac{4}{5}\right)$.
- (1) 求 $\sin \alpha + \cos \alpha$ 和 $\sin 2\alpha$ 的值;
- (2) 求 $\tan\left(2\alpha \frac{\pi}{4}\right)$ 的值.
- 18. 已知函数 $f(x) = 2ax^2 ax 1, a \in \mathbb{R}$.
- (1) 当a = 1时,解不等式f(x) < 0;
- (2) 若命题" $\forall x \in \mathbb{R}$, 不等式 f(x) < 0 恒成立"是假命题, 求实数 a 的取值范围.
- 19. 已知函数 $f(x) = 2\cos^2 x + \sqrt{3}\sin 2x + a, x \in \left[0, \frac{\pi}{2}\right]$. 从条件①、条件②这两个条件中选择一个作为已知.
- (1) 求 a 的值;
- (2) 求 f(x) 最小值,以及取得最小值时 x 的值.

条件①: f(x) 的最大值为 6;

条件②: f(x) 的零点为 $\frac{\pi}{2}$.

注: 如果选择条件①和条件②分别解答,按第一个解答计分.

20. 已知函数
$$f(x) = \log_{\frac{1}{2}} (2^x + 1) - mx, m \in \mathbf{R}$$
.

(1) 当m = 0时,解不等式f(x) > -1;

- (2) 若函数 f(x) 是偶函数,求 m 的值;
- (3) 当m=-1时,若函数y=f(x)的图象与直线y=b有公共点,求实数b的取值范围.
- 21. 设全集 $U = \{1, 2, \dots, n\} (n \in \mathbb{N}^*)$,集合 $A \neq U$ 真子集. 设正整数 $t \leq n$,若集合 A 满足如下三个性质,则称 A 为 U 的 R(t) 子集:
- ① $t \in A$;
- ② $\forall a \in A, \forall b \in \mathcal{C}_{U}A$,若 $ab \in U$,则 $ab \in A$;
- ③ $\forall a \in A, \forall b \in \mathcal{C}_U A$, $\exists a+b \in U$, $\bigcup a+b \notin A$.
- (1) 当n = 6时,判断 $A = \{1,3,6\}$ 是否为U的R(3)子集,说明理由;
- (2) 当 $n \ge 7$ 时,若A为U的R(7)子集,求证: $2 \notin A$;
- (3) 当n = 23 时, 若A为U的R(7)子集, 求集合A.

参考答案

第一部分(选择题 共50分)

一、选择题共 10 小题,每小题 5 分,共 50 分.在每小题列出的四个选项中,选出符合题目要求的一项.

1. 【答案】C

【解析】

【分析】结合特殊值以及幂函数的性质确定正确答案.

【详解】AD 选项, a=1,b=-1 ,则 a>b ,但 $a^2=b^2$, $\frac{1}{a^2}=\frac{1}{b^2}$,所以 AD 选项错误.

B选项, 若c = 0, 则 $ac^2 = bc^2$, 所以B选项错误.

C选项, 若a > b, 由于 $y = x^3$ 在 R 上递增, 所以 $a^3 > b^3$, 所以 C 选项正确.

故选: C

2. 【答案】B

【解析】

【分析】根据三角函数四个象限符号确定.

【详解】:: $\cos \theta < 0$,:: θ 为第二,三象限角或者 x 轴负半轴上的角;

又:: $\tan \theta < 0$,:: θ 为第二, 四象限角

所以 θ 为第二象限角.

故选: B

3. 【答案】B

【解析】

【分析】分别求出每个选项的单调性和值域即可得出答案.

【详解】对于 A, $y = 2^x$ 在定义域上单调递增且值域为 $(0, +\infty)$, 故 A 不正确;

对于 B, $y = (x-1)^3$ 在定义域上单调递增值域为 **R**, 故 B 正确;

对于 C, 由双勾函数的图象知, $y = x + \frac{1}{x} \div (-\infty, -1), (1, +\infty)$ 上单调递增, $\div (-1, 0), (0, 1)$ 上单调递减,

故 C 不正确:

对于 D, $y = \ln x$ | 的值域为 $[0,+\infty)$, 故 D 不正确.

故选: B.

4. 【答案】A

【解析】

【分析】根据终边相同的角的知识确定正确答案.

【详解】由于集合 $A = \left\{ \alpha \middle| \alpha = k\pi + \frac{\pi}{2}, k \in \mathbf{Z} \right\}$,所以集合 A 表示终边落在 y 轴上的角的集合;

由于集合 $B = \left\{ \alpha \middle| \alpha = 2k\pi \pm \frac{\pi}{2}, k \in \mathbb{Z} \right\}$,所以集合 B 表示终边落在 y 轴上的角的集合;

所以A = B

故选: A

5. 【答案】C

【解析】

【分析】根据对数运算求得正确答案.

【详解】依题意
$$L_1 = 10 \lg \left(\frac{10^{-6}}{10^{-12}} \right) = 10 \lg 10^6 = 60 dB$$
.

故选: C

6. 【答案】A

【解析】

【分析】

通过基本不等式可得充分性成立,举出反例说明必要性不成立.

【详解】当
$$a > 0$$
, $b > 0$ 时, $a + b \ge 2\sqrt{ab}$,

则当 $a+b \le 2$ 时,有 $2\sqrt{ab} \le a+b \le 2$,解得 $ab \le 1$,充分性成立;

当
$$a=2$$
, $b=\frac{1}{2}$ 时, 满足 $ab \le 1$, 但此时 $a+b=\frac{5}{2} > 2$, 必要性不成立,

综上所述, " $a+b \le 2$ "是" $ab \le 1$ "的充分不必要条件.

故选: A.

7. 【答案】D

【解析】

【分析】根据函数的单调性、值域、对称性以及方程的根等知识确定正确答案.

【详解】
$$f(x) = \frac{3^x - 1}{3^x + 1}$$
 的定义域为R, $f(x) = \frac{3^x + 1 - 2}{3^x + 1} = 1 - \frac{2}{3^x + 1}$

所以f(x)在R上递增,①错误.

所以f(x)的值域为(-1,1).

$$⊞ ∓ f(-x) = \frac{3^{-x} - 1}{3^{-x} + 1} = \frac{1 - 3^{x}}{1 + 3^{x}} = -f(x),$$

所以f(x)是奇函数,图象关于原点对称,③正确.

构造函数 $g(x) = x - \frac{2}{3^x + 1}$, g(x) 在 R 上单调递增,

$$g(0) = 0 - \frac{2}{1+1} = -1 < 0, g(1) = 1 - \frac{2}{4} = \frac{1}{2} > 0$$
,

所以g(x)在R上存在唯一零点,也即方程f(x) = -x + 1有且只有一个实根,④正确.

所以正确结论的序号是③④.

故选: D

8. 【答案】A

【解析】

【分析】先确定 $\frac{\alpha}{2}$ 的取值范围,由此求得 $\sin\frac{\alpha}{2}$ 的取值范围.

【详解】由于角 α 为第一象限角,

所以
$$2k\pi < \alpha < 2k\pi + \frac{\pi}{2}, k \in \mathbb{Z}$$
,

所以
$$k\pi < \frac{\alpha}{2} < k\pi + \frac{\pi}{4}, k \in \mathbb{Z}$$
,

由于
$$\sin \frac{\alpha}{2} > \cos \frac{\alpha}{2}$$
,所以 $2l\pi + \pi < \frac{\alpha}{2} < 2lk\pi + \frac{5\pi}{4}$, $l \in \mathbb{Z}$,

所以
$$-\frac{\sqrt{2}}{2}$$
< $\sin\frac{\alpha}{2}$ < 0 .

故选: A

9. 【答案】C

【解析】

【分析】生产 100 千克该产品获得的利润为 $f(x) = \frac{100}{x} \cdot 100 \left(3x + 1 - \frac{2}{x} \right)$, 令 $t = \frac{1}{x}$, 由换元法求二次函数最大值即可.

【详解】由题意得,生产100千克该产品获得的利润为

$$f(x) = \frac{100}{x} \cdot 100 \left(3x + 1 - \frac{2}{x}\right) = 10000 \left(3 + \frac{1}{x} - \frac{2}{x^2}\right) = 10000 \left[-2\left(\frac{1}{x}\right)^2 + \frac{1}{x} + 3\right], \quad 1 \le x \le 10,$$

$$\diamondsuit t = \frac{1}{x}, \quad \frac{1}{10} \le t \le 1, \quad \emptyset f(t) = 10000(-2t^2 + t + 3) = -20000 \left[\left(t - \frac{1}{4} \right)^2 - \frac{25}{16} \right], \quad \textcircled{in the proof of the proof$$

最大,此时x=4.

故选: C

10. 【答案】A

【解析】

【分析】由 f(x-1) = -f(x) 得 f(x-2) = f(x) ,则 f(x) 的周期为 2,结合函数的奇偶性,即可化简 a , b , c ,最后根据单调性比较大小.

【详解】由 f(x-1) = -f(x) 得 f(x-2) = -f(x-1) = f(x), ∴ f(x) 的周期为 2,

又
$$f(x)$$
 为偶函数,则 $a = f\left(\frac{2023}{2}\right) = f\left(1012 - \frac{1}{2}\right) = f\left(-\frac{1}{2}\right) = f\left(\frac{1}{2}\right)$, $c = f(2022) = f(0)$,

$$\because 0 < \ln \sqrt{2} < \ln \sqrt{e} = \frac{1}{2}$$
, $f(x)$ 在[0,1] 上单调递增, $\therefore c < b < a$.

故选: A

第二部分(非选择题 共100分)

- 二、填空题共6小题,每小题5分,共30分.
- 11. 【答案】 $\{x | -2 < x \le 1\}$

【解析】

【分析】根据并集的定义运算即可.

【详解】因为
$$A = \{x | -2 < x < 0\}$$
, $B = \{x | 0 \le x \le 1\}$,

所以
$$A \cup B = \{x | -2 < x \le 1\}$$
,

故答案为: $\{x | -2 < x \le 1\}$

12. 【答案】 ①.
$$\frac{7\pi}{6}$$
$\frac{7}{6}$ π ②. $-\frac{\sqrt{3}}{2}$

【解析】

【分析】由条件结合诱导公式求 $\sin \alpha$,根据特殊角三角函数值求出 α , $\sin \left(\frac{\pi}{2} + \alpha \right)$ 即可.

【详解】因为
$$\sin(\pi + \alpha) = \frac{1}{2}$$
,所以 $-\sin \alpha = \frac{1}{2}$,故 $\sin \alpha = -\frac{1}{2}$,又 $\alpha \in \left(\pi, \frac{3}{2}\pi\right)$,所以 $\alpha = \frac{7\pi}{6}$,

所以
$$\sin\left(\frac{\pi}{2} + \alpha\right) = \sin\left(\frac{\pi}{2} + \frac{7\pi}{6}\right) = \sin\frac{5\pi}{3} = \sin\left(2\pi - \frac{\pi}{3}\right) = -\sin\frac{\pi}{3} = -\frac{\sqrt{3}}{2}$$
,

故答案为:
$$\frac{7\pi}{6}$$
, $-\frac{\sqrt{3}}{2}$.

13. 【答案】2

【解析】

【分析】对 $\log_2(ab)$ 利用对数运算公式,得到 $\log_2 a + \log_2 b$,再由基本不等式以及条件中的 $\log_2 a \cdot \log_2 b = 1$,得到答案.

【详解】因为a > 1且b > 1,

所以 $\log_2 a > 0$ 且 $\log_2 b > 0$

而 $\log_2(ab) = \log_2 a + \log_2 b$,且 $\log_2 a \cdot \log_2 b = 1$

所以由基本不等式可得

$$\log_2(ab) = \log_2 a + \log_2 b \ge 2\sqrt{\log_2 a \cdot \log_2 b} = 2,$$

当且仅当 $\log_2 a = \log_2 b$, 即a = b = 2时, 等号成立.

【点睛】本题考查对数运算公式,基本不等式求和的最小值,属于简单题.

14. 【答案】
$$f(x) = 2\cos x$$
 (答案不唯一)

【解析】

【分析】根据函数的奇偶性和最值写出符合题意的 f(x).

【详解】依题意可知f(x)是偶函数,且最大值为2,

所以 $f(x) = 2\cos x$ 符合题意.

故答案为: $f(x) = 2\cos x$ (答案不唯一)

15. 【答案】
$$\frac{1}{x} + e^x$$

【解析】

【分析】观察图象确定函数 F(x) 的定义域和奇偶性和特殊点,由此确定 F(x) 的解析式.

【详解】由己知
$$F(x) = f(x) + g(x)$$
, $f(x), g(x) \in \left\{ y = x, y = \frac{1}{x}, y = x^2, y = \ln x, y = e^x \right\}$,

观察图象可得 F(x) 的定义域为 $\left(-\infty,0\right)\cup\left(0,+\infty\right)$,所以 f(x) 或 g(x) 中必有一个函数为 $y=\frac{1}{x}$,且另一个函

数不可能为 $y = \ln x$,又 F(x) 的图象不关于原点对称,所以 $F(x) \neq \frac{1}{x} + x$,所以 $F(x) = \frac{1}{x} + x^2$ 或

$$F(x) = \frac{1}{x} + e^{x},$$

若
$$F(x) = \frac{1}{x} + x^2$$
,则 $F(-1) = \frac{1}{-1} + 1 = 0$ 与函数 $F(x)$ 图象矛盾,

所以
$$F(x) = \frac{1}{x} + e^x$$
,

故答案为: $\frac{1}{x} + e^x$.

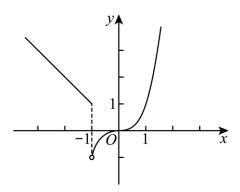
16. 【答案】①②④

【解析】

【分析】结合分段函数的性质对四个结论进行分析,从而确定正确答案.

【详解】①, 当
$$a = -1$$
 时, $f(x) = \begin{cases} x^3, x > -1 \\ |x|, x \le -1 \end{cases}$,

f(x)的图象如下图所示,由图可知,f(x)没有最小值,①正确.



②, 由于
$$f(x) = \begin{cases} x^3, x > a \\ |x|, x \le a \end{cases}$$

当
$$a < 0$$
 时, $f(0) = 0^3 = 0$; 当 $a \ge 0$ 时, $f(0) = |0| = 0$,

所以对任意实数 a, 函数 f(x) 都有零点,②正确.

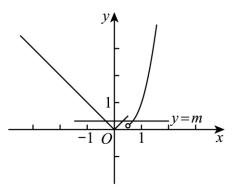
③
$$\stackrel{.}{=} a = \frac{1}{2}$$
 $\stackrel{.}{=}$ $f(x) = \begin{cases} x^3, x > \frac{1}{2} \\ |x|, x \le \frac{1}{2} \end{cases}$

$$\left(\frac{1}{2}\right)^3 = \frac{1}{8} < \frac{1}{2} = \left|\frac{1}{2}\right|$$
, 即函数 $f(x)$ 在 $(0, +\infty)$ 上不是单调递增函数,③错误.

④,
$$\stackrel{\text{def}}{=} 0 < a < 1$$
 时, $f(x) = \begin{cases} x^3, x > a \\ |x|, x \le a \end{cases}$

画出f(x)的图象如下图所示,

由图可知存在实数 m,使方程 f(x) = m 有 3 个不同的实根,④正确.



综上所述,正确结论的序号是①②④.

故答案为: ①②④

三、解答题共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.

17. 【答案】(1)
$$\sin \alpha + \cos \alpha = \frac{1}{5}, \sin 2\alpha = -\frac{24}{25}$$

$$(2) \frac{17}{31}$$

【解析】

【分析】(1)根据三角函数的定义求出 $\sin \alpha$, $\cos \alpha$,再根据二倍角的正弦公式即可求得 $\sin 2\alpha$;

(2) 先根据二倍角的余弦公式求出 $\cos 2\alpha$,再根据商数关系求出 $\tan 2\alpha$,再根据两角和的正切公式即可得解.

【小问1详解】

解: 由题意得
$$\sin \alpha = \frac{4}{5}$$
, $\cos \alpha = -\frac{3}{5}$,

所以
$$\sin \alpha + \cos \alpha = \frac{1}{5}$$
, $\sin 2\alpha = 2 \times \frac{4}{5} \times \left(-\frac{3}{5}\right) = -\frac{24}{25}$;

【小问2详解】

解:
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = -\frac{7}{25}$$
,

所以
$$\tan 2\alpha = \frac{\sin 2\alpha}{\cos 2\alpha} = \frac{24}{7}$$
,

所以
$$\tan\left(2\alpha - \frac{\pi}{4}\right) = \frac{\frac{24}{7} - 1}{1 + \frac{24}{7}} = \frac{17}{31}$$
.

18. 【答案】(1)
$$\left(-\frac{1}{2},1\right)$$

(2)
$$a \le -8$$
 或 $a > 0$

【解析】

【分析】(1) 根据一元二次不等式的解法求得不等式 f(x) < 0 的解集.

(2) 结合开口方向以及判别式求得 a 的取值范围.

【小问1详解】

当
$$a=1$$
 时, $f(x)=2x^2-x-1$, $f(x)<0$ 即 $2x^2-x-1<0$,

$$(2x+1)(x-1)<0$$
, 解得 $-\frac{1}{2}< x<1$

所以不等式
$$f(x) < 0$$
 的解集为 $\left(-\frac{1}{2}, 1\right)$.

【小问2详解】

当
$$a$$
不为 0 时, a < 0 且 $\Delta = a^2 + 8a < 0$,

即
$$-8 < a < 0$$
,

当
$$a = 0$$
时, $f(x) = -1 < 0$ 成立, 所以

$$-8 < a \le 0$$

命题" $\forall x \in \mathbb{R}$,不等式 f(x) < 0恒成立"是假命题

所以a的取值范围为: $a \le -8$ 或a > 0.

解:
$$f(x) = 2\cos^2 x + \sqrt{3}\sin 2x + a$$
,
 $= \cos 2x + \sqrt{3}\sin 2x + a + 1$,
 $= 2\sin(2x + \frac{\pi}{6}) + a + 1$.
若选① 当 $x \in \left[0, \frac{\pi}{2}\right]$ 时, $f(x)$ 的最大值为6;

(I) 由
$$x \in \left[0, \frac{\pi}{2}\right]$$
, 所以 $2x + \frac{\pi}{6} \in \left[\frac{\pi}{6}, \frac{7\pi}{6}\right]$.

所以当 $2x + \frac{\pi}{6} = \frac{\pi}{2}$ 时, $f(x)$ 取到最大值 6 .

即 $2 + a + 1 = 6$,

所以
$$a=3$$
.

(II)
$$f(x) = 2\sin(2x + \frac{\pi}{6}) + 4$$
.

因为 $2x + \frac{\pi}{6} \in \left[\frac{\pi}{6}, \frac{7\pi}{6}\right]$,

所以当 $2x + \frac{\pi}{6} = \frac{7}{6}\pi$ 时,

即
$$x = \frac{\pi}{2}$$
 时, $f(x)$ 取最小值 3.

若选② , 当
$$x \in \left[0, \frac{\pi}{2}\right]$$
 时, $f(x)$ 的零点为 $\frac{\pi}{2}$.

(I) 由题意
$$f(\frac{\pi}{2}) = 0$$
,即 $2\sin(2\cdot\frac{\pi}{2} + \frac{\pi}{6}) + a + 1 = 0$.
所以 $2\sin(\pi + \frac{\pi}{6}) + a + 1 = 0$,所以 $2\cdot(-\frac{1}{2}) + a + 1 = 0$.
所以 $a = 0$.

(II)
$$f(x) = 2\sin(2x + \frac{\pi}{6}) + 1$$
.

因为 $2x + \frac{\pi}{6} \in \left[\frac{\pi}{6}, \frac{7\pi}{6}\right]$, 所以当 $2x + \frac{\pi}{6} = \frac{7\pi}{6}$ 时,

即 $x = \frac{\pi}{2}$ 时, $f(x)$ 取最小值 0.

$$(2) -\frac{1}{2}$$

$$(3) \left(-\infty,0\right)$$

【解析】

【分析】(1) f(x) > -1 即 $\log_{\frac{1}{2}}(2^x + 1) > \log_{\frac{1}{2}}2$, 结合对数、指数函数单调性求解即可;

- (2) f(x) 是偶函数,则 f(x) = f(-x),结合对数运算法则化简求值即可
- (3) 由对数运算得 $f(x) = \log_{\frac{1}{2}} \left(1 + \frac{1}{2^x} \right)$ 在 **R** 上单调递增,且值域为 $\left(-\infty, 0 \right)$,即可由数形结合判断 b 的取值范围.

【小问1详解】

当
$$m = 0$$
 时, $f(x) > -1$ 即 $\log_{\frac{1}{2}}(2^x + 1) > -1 = \log_{\frac{1}{2}}2$,即 $2^x + 1 < 2$,解得 $x \in (-\infty, 0)$;

【小问2详解】

函数
$$f(x)$$
 是偶函数,则 $f(x) = f(-x)$,即 $\log_{\frac{1}{2}}(2^x + 1) - mx = \log_{\frac{1}{2}}(2^{-x} + 1) + mx$,即

$$\log_{\frac{1}{2}} \frac{2^x + 1}{2^{-x} + 1} = 2mx$$
, $\log_{\frac{1}{2}} 2^x = -x = 2mx$,

$$\therefore x \in \mathbf{R} , \text{ if } m = -\frac{1}{2};$$

【小问3详解】

$$\stackrel{\text{def}}{=} m = -1$$
 Fig. $f(x) = \log_{\frac{1}{2}}(2^x + 1) + x = \log_{\frac{1}{2}}(2^x + 1) + \log_{\frac$

∵
$$y = 1 + \frac{1}{2^x}$$
 为减函数,故 $f(x) = \log_{\frac{1}{2}} \left(1 + \frac{1}{2^x} \right)$ 在**R**上单调递增,且值域为 $\left(-\infty, 0 \right)$

:: 函数 y = f(x) 的图象与直线 y = b 有公共点,故实数 b 的取值范围为 $(-\infty, 0)$.

- 21. 【答案】(1) $A = \{1,3,6\}$ 不是 U 的 R(3) 子集;
- (2) 证明见解析; (3) 集合 $A = \{7,14,21\}$

【解析】

【分析】(1) 取 a=1,b=2, 由 $ab=2 \notin A$ 不满足性质②可得 A 不是 U 的 R(3) 子集;

- (2) 通过反证法,分别假设 $1 \in A$, $2 \in A$ 的情况,由不满足R(7)子集的性质,可证明出 $2 \notin A$;
- (3) 由 (2) 得, $1 \in \mathbb{C}_{U}A$, $2 \in \mathbb{C}_{U}A$, $7 \in A$,再分别假设 $3 \in A$, $4 \in A$, $5 \in A$, $6 \in A$ 四种情况,由不满足R(7)子集的性质,可得出 $3,4,5,6 \notin A$,再根据性质②和性质③,依次凑出 $8 \sim 23$ 每个数值是否满足条件即可.

【小问1详解】

当 n = 6 时, $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 3, 6\}$, $C_U A = \{2, 4, 5\}$,

取 a=1,b=2 , 则 $ab=2 \in U$, 但 $ab=2 \notin A$, 不满足性质②,

所以 $A = \{1,3,6\}$ 不是U的R(3)子集.

【小问2详解】

当n≥7时,A为U的R(7)子集,

则 $7 \in A$;

假设 $1 \in A$,设 $x \in \mathcal{C}_{U}A$,即 $x \notin A$

取 a=1,b=x , 则 $ab=x\in U$, 但 $ab=x\notin A$, 不满足性质②,

所以1 \notin A, 1∈ C_U A;

假设 $2 \in A$,

取 a = 2, b = 1, $a + b = 3 \in U$, 且 $a + b = 3 \notin A$, 则 $3 \in C_{V}A$,

再取 a = 2, b = 3, $ab = 6 \in U$, 则 $ab = 6 \in A$,

再取 a = 6, b = 1 , $a + b = 7 \in U$, 且 $a + b = 7 \notin A$,

但与性质① $7 \in A$ 矛盾,

所以2∉A.

【小问3详解】

由 (2) 得, 当 $n \ge 7$ 时, 若A为U的R(7)子集, $1 \in \mathcal{C}_{U}A$, $2 \in \mathcal{C}_{U}A$, $7 \in A$,

所以当n = 23时, $U = \{1, 2, \dots, 23\}$,

若 A 为 U 的 R(7) 子集, $1 \in \mathcal{L}_U A$, $2 \in \mathcal{L}_U A$, $7 \in A$;

若 3 \in A ,取 a = 3, b = 1 , $a + b = 4 \in U$,则 $4 \notin A$, $4 \in \mathcal{C}_U A$,

再取 a = 3, b = 4 , $a + b = 7 \in U$, 则 $7 \notin A$, 与 $7 \in A$ 矛盾 ,

则 $3 \notin A$, $3 \in \mathbb{C}_{d}A$;

若 $4 \in A$,取 a = 4, b = 3, $a + b = 7 \in U$,则 $7 \notin A$,与 $7 \in A$ 矛盾,则 $4 \notin A$, $4 \in \mathbb{C}_{U}A$;

若 $6 \in A$,取 a = 6, b = 1, $a + b = 7 \in U$,则 $7 \notin A$,与 $7 \in A$ 矛盾,则 $6 \notin A$, $6 \in \mathcal{C}_{U}A$;

取 a = 7, b = 1, 2, 3, 4, 5, 6, $a + b = 8, 9, 10, 11, 12, 13 \in U$, 则 $8, 9, 10, 11, 12, 13 \notin A$,

 $8,9,10,11,12,13 \in \mathbb{C}_{t}A$;

取 a = 7, b = 2 , $ab = 14 \in U$, 则 $14 \in A$;

取 a = 14, b = 1, 2, 3, 4, 5, 6, $a + b = 15, 16, 17, 18, 19, 20 \in U$, 则 $15, 16, 17, 18, 19, 20 \notin A$,

 $15,16,17,18,19,20 \in C_{r}A$:

取 a = 7, b = 3, $ab = 21 \in U$, 则 $21 \in A$;

取 a = 21, b = 1, 2, $a + b = 22, 23 \in U$, 则 $22, 23 \notin A$, $22, 23 \in \mathcal{C}_U A$;

综上所述,集合 $A = \{7,14,21\}$.

【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,"照章办事",逐条分析、验证、运算,使问题得以解决.