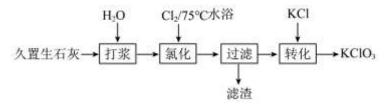
2023 北京首都师大附中高一 12 月月考

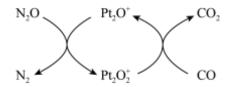
化 学

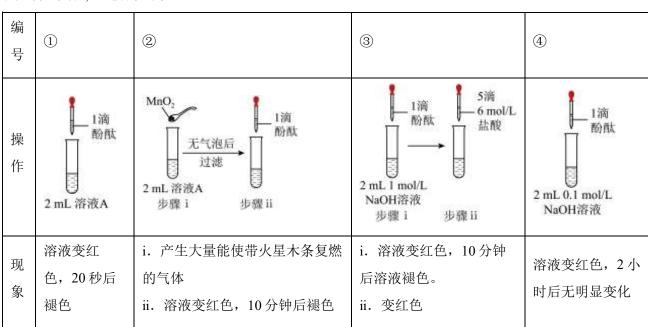
可能用到的相对原子质量 H: 1 C: 12 N: 14 O: 16 Na: 23 Cl: 35.5 第I卷(共 45 分)

- 一、选择题(本大题共 15 小题,每小题 3 分,共 45 分。在每小题所列出的四个选项中,只有一项是最符合题目要求的)
- 1. 下列行为不符合实验规范或安全要求的是
- A. 做实验剩余的金属钠放回原瓶而非丢弃在废液缸中
- B. 金属钠着火时, 选择用沙土覆盖
- C. 制备氯气时在通风良好的场所进行以避免大量氯气聚集
- D. 大量氯气泄漏时,应尽快撤离现场并往地势较低处去
- 2. 下列物质的焰色为紫色(透过蓝色钴玻璃)的是
- A. KCl
- B. CaCl₂
- C. NaCl
- D. CuCl₂


- 3. 有关物质的量相关概念下列说法正确的是
- A. "摩尔"是国际单位制中七个基本物理量之一
- B. 1 摩尔任何粒子的微粒数目都约为 6.02×10²³
- C. 将1mol NaCl溶于1L水,可以得到1mol/L NaCl溶液
- D. CO,的摩尔质量是 44g
- 4. 以下实验无法达到相应目的的是
- A. 用水鉴别 Na₂CO₃和 NaHCO₃ 固体
- B. 用观察法区别 Na₂O 和 Na₂O₂
- C. 用 MgCl₂溶液鉴别 Na₂CO₃溶液和 NaOH 溶液
- D. 用稀盐酸鉴别 Na₂CO₃溶液和 NaHCO₃溶液
- 5. 0.6L 1mol/L CaCl₂溶液与0.5L 0.8mol/L FeCl₃溶液中的Cl⁻浓度之比是
- A. 6: 5
- B. 2: 3
- C. 5: 6

D. 1: 1


- 6. 若 $N_{\rm A}$ 表示阿伏加德罗常数的值,下列说法正确的是
- A. lmol OH-含有的电子数为9N_A
- B. 1mol/L NaCl 溶液中含有 Na⁺的个数为 N_A
- C. $0.2 \text{mol Na}_2\text{O}_2$ 与足量 H_2O 反应,转移电子的数目为 $0.2N_A$
- D. 标准状况下,2.24L H_2O 所含氢原子个数为 $0.2N_A$


7. 下列各组离子能在给定条件下大量共存的是 A. 0.1mol/L 溶液中: Ca²⁺、NH₄ 、NO₃ 、 B. 加入酚酞变红的溶液中: Ba^{2+} 、 Mg^{2+} 、 、 ClO^{-} C. 新鲜制备的氯水中: 、 NH_4^+ 、 NO_3^- 、 SO_3^{2-} D. pH = 1 的透明溶液中: Fe^{3+} 、 K^+ 、 ClO^- 、 SO_4^{2-} 8. 三氧化铁(FeO_3)是铁的最高价态氧化物,其与稀硫酸反应会得到 $Fe_3(SO_4)_3$ 并放出 O_3 ,与浓 溶液反应生成 Na₂FeO₄,则以下说法正确的是 A. FeO_3 中 Fe元素已达到最高价态,所以 FeO_3 只能表现出氧化性 B. FeO,是两性氧化物 溶液的离子方程式为 $FeO_3 + 2OH^- = FeO_4^{2-} + H_2O$ C. FeO₃溶于浓 D. FeO。溶于浓盐酸会发生氧化还原反应,其氧化产物只有O。 9. 下列实验事实可以说明久置的 固体变质的是 A. 将该固体溶于水后滴加酚酞试剂,溶液变为红色,振荡后颜色褪去 B. 将该固体加入饱和 溶液,产生白色沉淀;再加入稀盐酸后沉淀溶解 C. 将该固体加入稀盐酸,产生大量无色无味气体 D. 将该固体溶于水后加热煮沸,然后加入少量 BaCl,溶液,产生白色沉淀 10. 铅丹的主要成分是四氧化三铅(含有 +2 和 +4 两种价态的 Pb), 常温下是鲜红色粉末, 可以涂在铁器上 防止铁器生锈;在某装置中铅丹与浓盐酸发生反应,主要产物为H₂PbCl₄与Cl₂,有关该反应,下列说法 正确的是 A. 每产生 11.2L Cl₂,转移电子数目约为 B. 反应物中,被氧化的 HCl 与未被氧化的 HCl 物质的量之比为 1:6 C. 该反应中氧化产物与还原产物物质的量之比为 1:3 D. 将该装置中产生的气体通入 溶液有 生成,说明Cl。溶于水生成酸 11. 已知 27.4g 与 的混合物与 200mL 2.0mol/L 稀盐酸恰好完全反应,将反应后的溶液 蒸干后所得固体质量为 A. 11.7g B. 14.2g C. 17.55g D. 23.4g 12. 在某一温度下,将一定量的 Cl_2 通入 2mol/L的KOH溶液中,恰好完全反应(不考虑溶液体积变 化), 其氧化产物为 KClO 与 KClO₃, 已知反应后的溶液中 $n(KClO_3) = 0.12 mol$, 则被氧化与被还原的 CI原子个数之比为 A. 19: 31 B. 13: 37 C. 7: 18 D. 6: 19 13. 用久置于空气中的生石灰[主要成分为CaO,还含有Ca(OH),和CaCO,]制取KClO,的流程如下图所 示。下列有关说法不正确的是

- A. "打浆"过程增大了反应物的接触面积,以便于后续的"氯化"步骤
- B. "氯化"中主要发生的反应为: $6Cl_2 + 6Ca(OH)_2 = \frac{75^{\circ}C}{Ca(ClO_3)_2} + 5CaCl_2 + 6H_2O$
- C. "过滤"后的滤渣中主要含有 CaCO₃
- D. "转化"时加入的 被氧化为 KClO₃
- 14. 设 为阿伏加德罗常数的值。如图表示 N_2O 气体在 Pt_2O^+ 表面与 CO 反应转化成无害气体的过程。下列说法正确的是

- A. 将生成的 通入 溶液中,有白色沉淀产生
- B. 已知该反应在恒温恒容的容器中发生,反应前后气体压强不变
- C. Pt_2O^+ 转化为 $Pt_2O_2^+$ 得电子数为 $2N_A$
- D.1g 与 N_2O 的混合气体中含有电子数为
- 15. 研究小组探究 与水反应。取 1.56g 粉末加入到 40mL 水中,充分反应得溶液 A(液体体积无明显变化),进行以下实验。

下列说法不正确的是

- A. 由①中溶液变红色,说明溶液 A中存在碱性物质
- B. 由②中现象i可知, 与水反应有 H_2O_2 生成
- C. 由③、④可知,②中褪色后的溶液中滴加 5 滴 6mol/L 盐酸,溶液可能变成红色
- D. 由②、③、④可知, ①中溶液红色褪去的主要原因是氢氧化钠浓度大

第Ⅱ卷(共 55 分)
16. 钠是一种非常活泼的金属,钠和钠的化合物在生活中有广泛的应用,请回答以下相关问题:
(1) 将一小块单质 Na 投入 溶液,其发生反应的离子方程式为。
(2) 采用空气和单质 Na 为原料可以在实验室制备少量 , 空气与金属 Na 反应前需要依次通过的试
剂为、、
①饱和 溶液 ②浓硫酸 ③ 溶液 ④酸性 KMnO ₄ 溶液
(3) 向酸性 $\mathrm{KMnO_4}$ 溶液中加入少量 ,可以观察到紫色褪去,溶液中产生大量气泡,其发生反应
的离子方程式为,该现象体现了 的(选填"氧化性"、"还原性"或"漂白
性"),若有 $KMnO_4$ 被还原,生成标况下气体的体积为。
(4)除去 固体中混有的少量 固体可以采用对固体混合物充分加热的方法,其发生反应
的化学方程式为; 若加热前的混合样品为 5.00g, 加热后的样品为 4.38g, 则原混合物中
的质量分数为。
(5) 用化学方程式表示除去 溶液中混有的少量 的方法。
17. 实验室用 $Na_2CO_3 \cdot 10H_2O$ 晶体配制 $0.200 mol/L$ 的 溶液 $480 mL$ 。
(1) 该实验所用玻璃仪器除量筒,烧杯,玻璃棒外,还有和。
(2) 称量固体时, 砝码应放在托盘天平的(填"左盘"或"右盘")。
(3) 配制溶液时,应称量晶体的质量为,对于该晶体,下列说法正确的是。
(a)该晶体加热失水转化为 是物理变化
(b) Na ₂ CO ₃ ·10H ₂ O 是一种纯净物
(c)该晶体加入足量稀盐酸会放出无色无味气体
(d)该晶体的水溶液显碱性
(4) 将称量好的所需固体放入烧杯中,加入适量蒸馏水并用玻璃棒充分搅拌使固体完全溶解后,后续操
作顺序为(填序号),然后进行定容,将溶液摇匀,最后装瓶,贴标签。
①将适量蒸馏水注入容量瓶,至液面离刻度线 1-2cm 处
②将烧杯中的溶液沿玻璃棒注入容量瓶中
③将溶液冷却至室温
④用少量蒸馏水洗涤烧杯内壁和玻璃棒 2-3 次,将洗涤液都注入容量瓶中。并轻轻摇动容量瓶,使溶液混
合均匀。

(5) 指出以下操作会导致配制溶液浓度的变化(填"偏大"、"偏小"或"无影响")
i. 定容时仰视刻度线;
ii. 定容并摇匀溶液后发现液面低于刻度线, 然后补加蒸馏水至刻度线;
iii. 容量瓶未充分干燥,瓶中仍有少量蒸馏水;
iv. 称量的晶体中含有。
18. CIO_2 是一种常用的自来水消毒剂。某研究小组用如图装置制备少量 CIO_2 (夹持装置已略去);已知
ClO₂ 常温下为易溶于水而不与水反应的气体,水溶液呈深黄绿色,11℃时液化成红棕色液体。
NaClO ₃ A B C NaOH溶液
(1) 已知该制备过程中同时有 \mathbf{Cl}_2 生成,则装置 \mathbf{A} 中发生反应的化学方程式为,将 \mathbf{Cl}_2 通入
冷的石灰乳可以制得漂白粉,其化学方程式为。
(2) B装置中冰水浴的作用为。
(3) ClO_2 可以氧化自来水中可能存在的有毒离子 CN^- 得到两种无毒气体(均为空气中含有的气体成分),
自身被还原为 ,其发生反应的离子方程式为,如果以单位质量消毒剂得到的电子数作为消
毒效率,则 ClO_2 的消毒效率是 Cl_2 的倍。
(4) 反应一段时间后停止反应,检测到 C 装置中 $n(ClO^-)=0.20$ mol ,则 B 装置中收集到的 ClO_2 质量
为(假设反应中产生的气体在相应装置中完全吸收)。
19. 某小组探究 $AgNO_3$ 溶液对氯水漂白性的影响,部分装置如下图所示。
水盐酸 MnO2 it剂; ? NaOH溶液
A B C D
(1) A 中反应的离子方程式是 。

(2) B 中试剂是_____, 其作用为____。

(3) 取 C 中氯水, 进行实验: 向试管I和II中各加入 1mL 氯水:

序号	所加试剂	现象
I	1滴品红+a	几秒后品红褪色
II	1滴品红+1mL AgNO ₃ 溶液	几分钟后品红褪色,产生白色沉淀

以上实验说明,所得沉淀中含 AgClO。

II	1滴品红+1mL AgNO ₃ 溶液	几分钟后品红褪色,产生白色沉淀							
试管I中所加试剂 a 为。									
(4) II中品红褪色慢,推测可能发生了 HClO + AgNO ₃ =AgClO ↓ +HNO ₃ ,导致II中 HClO 减少。分析									
沉淀中含 AgClO,探究如下:将沉淀滤出并用蒸馏水洗涤,然后向沉淀中加入盐酸,产生黄绿色气体。									
根据以	上推测,产生黄绿色气体的离	写子方程式是。							
(5) 绍	(5) 经查阅资料可知,AgClO具有一定的溶解性,一定条件下,其可以转化为更难溶的AgCl;据此,								
甲同学认为II中溶液仍具有漂白性,可能是 AgClO 部分溶解后导致溶液具有漂白性,乙同学认为是因为所									
加 $AgNO_3$ 溶液不足量;甲同学通过离子检验证明了乙同学的猜测不正确,其实验过程为。									
(6) 甲同学利用本探究实验中的试剂进一步证实 II 中所得沉淀中含 $AgClO$: 向沉淀中加入饱和 溶									
液,静	置、过滤,滤渣、滤液备用;								
①实验证实滤渣中无 AgClO;									
②取滤	液,;								

参考答案

第I卷(共 45 分)

一、选择题(本大题共 15 小题,每小题 3 分,共 45 分。在每小题所列出的四个选项中,只有一项是最符合题目要求的)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
D	A	В	С	С	С	A	С	D	В	D	В	D	В	D

第II卷(共 55 分)

【16 题答案】

【答案】16. $2Na + 2H_2O = 2Na^+ + 2OH^- + H_2$ 个

17. (1). (3) (2). (2)

18. ①. $5Na_2O_2 + 2MnO_4^- + 16H^+ = 10Na^+ + 2Mn^{2+} + 5O_2 \uparrow + 8H_2O$ ②. 还原性 ③. 11.2L

19. ① 2NaHCO₃ $\stackrel{\Delta}{=}$ Na₂CO₃ + H₂O + CO₂ \uparrow ② .66.4%;

20. $Na_2CO_3 + H_2O + CO_2 = 2NaHCO_3$

【17 题答案】

【答案】(1) ①. 500mL 容量瓶 ②. 胶头滴管

(2) 右盘 (3) ①. 28.6g ②. (b)(c)(d)

(4) ③②④① (5) ①. 偏小 ②. 偏小 ③. 无影响 ④. 偏大

【18 题答案】

【答案】(1) ①. $2\text{NaClO}_3 + 4\text{HCl}(浓) = 2\text{NaCl} + 2\text{ClO}_2 \uparrow + \text{Cl}_2 \uparrow + 2\text{H}_2\text{O}$ ②.

 $2Cl_2 + 2Ca(OH)_2 = CaCl_2 + Ca(ClO)_2 + 2H_2O$

- (2) 使CIO₂冷凝为液体,便于收集;
- (3) ①. $2CIO_2 + 2CN^- = 2CI^- + N_2 + 2CO_2$ ②. 2.63
- (4) 27g

【19 题答案】

【答案】(1) $MnO_2 + 4H^+ + 2Cl^- \stackrel{\Delta}{=} Mn^{2+} + 2H_2O + Cl_2$ ↑

(2) ①. 饱和 溶液 ②. 除去 Cl₂ 混有的 HCl 气体

(3) 1mL 蒸馏水 (4) $AgClO + 2H^{+} + 2Cl^{-} = AgCl + H_{2}O + Cl_{2}$

(5) 取少量II中上清液于洁净试管中,加入两滴稀盐酸(或溶液等),观察到有白色沉淀生成

(6) 加入一滴品红(溶液)并振荡,溶液中的红色褪去