北京市平谷区 2020 年中考统一练习（一）

数学试卷参考答案及评分标准

一，选择题（本题共 16 分，每小题 2 分）

题号	1	2	3	4	5	6	7	8
答案	B	C	A	B	D	A	C	D

二，填空题（本题共 16 分，每小题 2 分）
9． $2(a-1)^{2}$ ；
10．圆柱；
11． $\mathrm{x} \neq 1$ ；
12．$-1 \leq y \leq 3: 13$ ．答案不唯一，如
$\mathrm{a}=0, \quad \mathrm{~b}=-1$ ；
14．$\frac{5}{4}$ ；
15．$(x-6)+(x-3)+x+(x+3)+(x+6)=60$ ；或 $5 x=60$
16．（2）（3）．
三，解答题（本题共 68 分，第 $17-21$ 题，每小题 5 分，第 22－27题，每小题 6 分，第 28题7分）解答应写出文字说明，演算步骤或证明过程。

19．证明：$\because O G$ 平分 $\angle M O N$
$\therefore \angle \mathrm{MOG}=\angle \mathrm{NOG}$ \qquad
$\because A B \perp O G$ 于点 B
$\therefore \angle \mathrm{ABO}=90^{\circ}$
$\because C$ 为线段 $O A$ 中点
$\therefore \mathrm{BC}=\frac{1}{2} \mathrm{AO}=\mathrm{CO}$ ．． 3

$\therefore \angle \mathrm{MOG}=\angle \mathrm{CBO}$
$\therefore \angle \mathrm{NOG}=\angle \mathrm{CBO}$
$\therefore B C / / O N$ ．

20．解：（1）$\Delta=(-2 k)^{2}-4\left(k^{2}+\mathrm{k}-2\right)$ $\cdot 1$

$\quad=-4 \mathrm{k}+8 \cdots \cdots \cdots \cdots \cdots \cdots$
\because 有两个不相等的实数根

$\therefore-4 \mathrm{k}+8>0$

$\therefore \mathrm{k}<2$
（2）$\because \mathrm{k}<2$ 且 k 为正整数
$\therefore \mathrm{k}=1$
$\therefore \mathrm{x}^{2}-2 \mathrm{x}=0$
解得 $\mathrm{x}_{1}=0, \mathrm{x}_{2}=2$ 。

21．（1）证明：$\because B F / / A C, C F / / B D$
\therefore 四边形 $O B F C$ 是平行四边形 \qquad ．． 1
\because 矩形 $A B C D$
$\therefore \mathrm{AC}=\mathrm{BD}, \mathrm{BO}=\frac{1}{2} \mathrm{BD}, \mathrm{CO}=\frac{1}{2} \mathrm{AC}$
$\therefore \mathrm{OB}=\mathrm{OC}$
\therefore 四边形 OBFC 是菱形． 2
（2）解：连接 FO 并延长交 AD 于 H ，交 BC 于 K
\because 菱形 OBFC
$\therefore \angle \mathrm{BKO}=90^{\circ}$

\because 矩形 ABCD
$\therefore \angle \mathrm{DAB}=\angle \mathrm{ABC}=90^{\circ}, \angle O \mathrm{OA}=\mathrm{OD}$
\therefore 四边形 ABKH 是矩形

$\therefore \mathrm{H}$ 是 AD 中点
$\because \mathrm{O}$ 是 BD 中点
$\therefore \mathrm{OH}=\frac{1}{2} \mathrm{AB}=1$
$\therefore \mathrm{FK}=\mathrm{OK}=\mathrm{OH}=1$
$\therefore H F=3$ \qquad
$\therefore \mathrm{HD}=\mathrm{AH}=2$
$\therefore B C=A D=4$
由勾股定理： $\mathrm{AC}=\sqrt{\mathrm{AB}^{2}+\mathrm{BC}^{2}}=2 \sqrt{5}$ ．． 5

22．（1）依题意补全图形
证明：
\because 等边 $\triangle \mathrm{ABC}$ ，
$\therefore \mathrm{AB}=\mathrm{AC}$
$\therefore \overparen{A B}=\overparen{A C}$ ．．． 2
$\because A D$ 过圆心 0
由垂径定理，$\angle \mathrm{AEC}=90^{\circ}$

$\because \mathrm{DF} / / \mathrm{BC}$ ，
$\therefore \angle \mathrm{ADF}=90^{\circ}$

$\therefore \mathrm{DF}$ 与 $\odot O$ 相切
（2）解：连接 DC
\because 等边 $\triangle \mathrm{ABC}$ ，
$\therefore \mathrm{AB}=\mathrm{AC}=\mathrm{BC}=6$
$\angle \mathrm{BAC}=60^{\circ}$ 4
$\because A D \perp B C$
$\therefore \angle \mathrm{DAC}=30^{\circ}$
$\because A D$ 是直径
$\therefore \angle \mathrm{ACD}=90^{\circ}$
$\therefore \mathrm{DC}=2 \sqrt{3}$ ， 1
$\because \angle \mathrm{DCF}=90^{\circ}, \angle \hat{\mathrm{F}}=60^{\circ}$
$\therefore \mathrm{CF}=2$ ．
．． 6

\qquad
（2）3
（3） $4<n \leq 5$ 或 $0<n<1$
24．（1）扇形统计图补充完整 47．1\％
条形统计图补充完整 4335．
（2）2018
（3）${ }^{1}$（4）

25．（1）确定 C D 的长度是自变量，PD 的长度和PE的长度都是这个自变量的函数；
（2）

（3） $2.6,1.9,3.5^{\circ}$

26．（1）A（ 0,1 ）．．
B $(4,1)$
（2）$x=-\frac{b}{2 a}=m$
（3） $\mathrm{m} \leq 0$ 或 $\mathrm{m}>2$
27．（1）补全图形
（2） 135° \qquad

（3）

$$
\alpha=30^{\circ}
$$3

证明：过 A 作 AG世CEIG．B 连接AC． 4

由题意， $\mathrm{BC}=\mathrm{BE}=\mathrm{BA}$
$\therefore \angle \mathrm{BCE}=\angle 2, \angle \mathrm{BAE}=\angle 1$
$\because \angle \mathrm{BCE}+\angle 2+\angle \mathrm{BAE}+\angle 1+\angle \mathrm{ABC}=360^{\circ}$
$\because \angle \mathrm{ABC}=90^{\circ}$

$\therefore 2(\angle 2+\angle 1)=270^{\circ}$
$\therefore \angle 2+\angle 1=135^{\circ}$
$\therefore \angle \mathrm{AEG}=45^{\circ}$
$\because A E=\sqrt{2}$
$\therefore \mathrm{AG}=\mathrm{GE}=1$
当 $\alpha=30^{\circ}$ 时，
$\therefore \angle \mathrm{EBC}=30^{\circ}$
$\because B C=B E$
$\therefore \angle \mathrm{BCG}=75^{\circ}$
$\because \angle \mathrm{BCA}=45^{\circ}$
$\therefore \angle \mathrm{ACG}=30^{\circ}$
$\therefore \mathrm{CG}=\sqrt{3}$
$\therefore \mathrm{CE}=\sqrt{3}-1$

28．（1）补全图形 \qquad .1
（2）设 $\mathrm{A}(2, \mathrm{a})$
当 $\mathrm{a}=2$ 时，正方形 ABCD 的顶点 C 恰好落在 $\odot \mathrm{A}$ 上；

当 $\mathrm{a}>2$ 时，正方形 ABCD 的顶点均落在 $\odot \mathrm{A}$ 内部；
当 $\mathrm{a}<2$ 时，正方形 ABCD 的顶点 C 落在 $\odot \mathrm{A}$ 外部；
\because 反比例函数 $y=\frac{\mathrm{k}}{x}(\mathrm{k}>0, x>0)$ 过点 $\mathrm{A}(2, \mathrm{a})$

（3）当 $\mathrm{m}=1$ 时，正方形 ABCD 的顶点 C 恰好落在 $\odot \mathrm{A}$ 上；
当 $0<m<1$ 时，正方形 $A B C D$ 均落在 $\odot A$ 内部；
当 $m=0$ 时，$\triangle A B O$ 不存在；
当 $\mathrm{m}<0$ 时，正方形 ABCD 均落在 $\odot \mathrm{A}$ 内部；
当 $\mathrm{m}>1$ 时，正方形 ABCD 的顶点 C 落在 $\odot \mathrm{A}$ 外部（当 $\mathrm{m}=2 \mathrm{z}$ 的 $\triangle \mathrm{ABO}$ 不存在）；

\qquad
所以， $0<\mathrm{m} \leq 1$ 或 $\mathrm{m}<0$

