# 2023 北京西城高一(上)期末

## 数学

2023.1

本试卷共6页,共150分。考试时长120分钟。考生务必将答案写在答题卡上,在试卷上作答无效。

### 第一部分(选择题 共40分)

| —、 | 选择题共10小题, | 每小题4分.                | 共40分。    | 在每小题列出的四个选项中, | 选出符合题目要求的一项。 |
|----|-----------|-----------------------|----------|---------------|--------------|
| ١, |           | <u>い</u> '」' (Cシェノ) 。 | ~~TUJJ 0 |               |              |

| (1) | 己知集合。 | $A = \{ x \mid$ | 1-5 < r < 1 | R =                           | $\{r \mid r^2 < 0\}$ | a). III | $A \mid \mid R =$ |
|-----|-------|-----------------|-------------|-------------------------------|----------------------|---------|-------------------|
| (I) |       | A - 11          | −3 ≤ x < 1  | $\mathbf{b}$ , $\mathbf{D}$ – | 1.1.1.1 ≥ :          | フィ・ 火生  | $A \cup D -$      |

(A) [-5,3]

(B) (-3,1]

(C) [-3,1)

(D) [-3,3]

(2) 已知命题  $p:\exists x<1$ ,  $x^2 \leq 1$ , 则 $\neg p$ 为

(A)  $\forall x \ge 1, x^2 > 1$ 

(B)  $\exists x < 1, x^2 > 1$ 

(C)  $\forall x < 1, x^2 > 1$ 

(D)  $\exists x \ge 1, x^2 > 1$ 

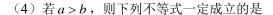
(3) 如图,在平行四边形 ABCD 中, $\overrightarrow{AC} - \overrightarrow{AB} =$ 

(A)  $\overrightarrow{CB}$ 

(B)  $\overrightarrow{AD}$ 

(C)  $\overrightarrow{BD}$ 

(D)  $\overrightarrow{CD}$ 



- (A)  $\frac{1}{a} < \frac{1}{b}$  (B)  $a^2 > b^2$  (C)  $e^{-a} < e^{-b}$  (D)  $\ln a > \ln b$

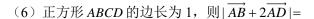
(5) 不等式  $\frac{2x+1}{x-2} \le 1$  的解集为

(A) [-3,2]

(B)  $(-\infty, -3]$ 

(C) [-3,2)

(D)  $(-\infty, -3] \bigcup (2, +\infty)$ 



- (B) 3
- (C)  $\sqrt{3}$
- (D)  $\sqrt{5}$

(7) 某物流公司为了提高运输效率,计划在机场附近建造新的仓储中心. 已知仓储中心建造费用 C (单 位:万元)与仓储中心到机场的距离 s(单位:km)之间满足的关系为  $C = \frac{800}{s} + 2s + 2000$ ,则当 C最小时,s的值为

- (A) 20
- (B)  $20\sqrt{2}$  (C) 40 (D) 400

(8) 设  $\log_2 3 = a$ , 则  $2^{1+2a} =$ 

(A) 8

(B) 11

(C) 12

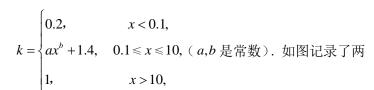
(D) 18

- (9) 已知a为单位向量,则"|a+b|-|b|=1"是"存在 $\lambda>0$ ,使得 $b=\lambda a$ "的
  - (A) 充分而不必要条件
- (B) 必要而不充分条件

(C) 充分必要条件

- (D) 既不充分也不必要条件
- (10) 近年来,踩踏事件时有发生,给人们的生命财产安全造成了巨大损失. 在人员密集区域,人员疏散是控制事故的关键,而能见度 *x* (单位: 米) 是影响疏散的重 *k* ↑

控制事故的大键,而能见度x(单位:x)是影响疏散的里要因素。在特定条件下,疏散的影响程度k与能见度x满足函数关系:





次实验的数据,根据上述函数模型和实验数据,b的值是

(参考数据: lg3≈0.48)

(A) -0.24

(B) -0.48

(C) 0.24

(D) 0.48

第二部分(非选择题共110分)



- 二、填空题共5小题,每小题5分,共25分。
- (11) 函数  $f(x) = \log_2(1-x) + \sqrt{x}$  的定义域是\_\_\_\_\_.
- (12) 某高校调查了 200 名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自

习时间的范围是 [12.5,25] , 样本数据分组为 [12.5,15) , [15,17.5) , [17.5,20) , [20,22.5) , [22.5,25] . 根据频率分布直方图, 这 200 名学生中每周的自习时间不少于 20 小时的人数是



- (13) 写出一个同时满足下列两个条件的函数  $f(x) = _____$ .
  - ① $\forall x_1, x_2 \in (0, +\infty)$ ,  $f(x_1x_2) = f(x_1) + f(x_2)$ ;
  - ②当 $x \in (4,+\infty)$ 时,f(x) > 1恒成立.
- (14) 已知函数  $f(x) = \begin{cases} 2^x + a, & x \ge 0, \\ ax, & x < 0, \end{cases}$  若 a = -4,则 f(x) > 0 的解集为\_\_\_\_\_\_;

若  $\forall x \in \mathbf{R}$  , f(x) > 0 , 则 a 的取值范围为\_\_\_\_\_.

- (15) 函数 f(x) 的定义域为  $\mathbf{R}$ ,且  $\forall x \in \mathbf{R}$  ,都有  $f(-x) = \frac{1}{f(x)}$  ,给出下列四个结论:
  - ① f(0) = 1或-1;

- ② f(x) 一定不是偶函数;
- ③若 f(x) > 0,且 f(x) 在  $(-\infty,0)$  上单调递增,则 f(x) 在  $(0,+\infty)$  上单调递增;
- ④若 f(x) 有最大值,则 f(x) 一定有最小值.

其中,所有正确结论的序号是 .

- 三、解答题共6小题,共85分。解答应写出文字说明,演算步骤或证明过程。
- (16) (本小题 13分)

某射手打靶命中9环、10环的概率分别为0.25, 0.2. 如果他连续打靶两次,且每次打靶的命中结果互不影响.

- (I) 求该射手两次共命中20环的概率;
- (Ⅱ) 求该射手两次共命中不少于19环的概率.

#### (17) (本小题 15 分)

已知函数 
$$f(x) = \frac{x}{x^2 + 1}$$
.



- (Ⅱ)证明函数 f(x) 在[1,+∞)上是减函数;
- (Ⅲ) 写出函数 f(x) 在( $-\infty$ ,-1]上的单调性(结论不要求证明).



#### (18) (本小题 14分)

甲和乙分别记录了从初中一年级(2017年)到高中三年级(2022年)每年的视力值,如下表所示.

|   | 2017年 | 2018年 | 2019年 | 2020年 | 2021年 | 2022年 |
|---|-------|-------|-------|-------|-------|-------|
| 甲 | 4.94  | 4.90  | 4.95  | 4.82  | 4.80  | 4.79  |
| 乙 | 4.86  | 4.90  | 4.86  | 4.84  | 4.74  | 4.72  |

- (I) 计算乙从 2017 年到 2022 年这 6 年的视力平均值;
- (Ⅱ)从2017年到2022年这6年中随机选取2年,求这两年甲的视力值都比乙高0.05以上的概率;
- (Ⅲ) 甲和乙的视力平均值从哪年开始连续三年的方差最小? (结论不要求证明)

(19) (本小题 15 分)

函数  $f(x) = |1 - \lg x| - c$ , 其中  $c \in \mathbb{R}$ .

- (I) 若c=0, 求f(x)的零点;
- (II) 若函数 f(x) 有两个零点  $x_1, x_2(x_1 < x_2)$ , 求  $4x_1 + x_2$ , 的取值范围.

#### (20) (本小题 13 分)

某商贸公司售卖某种水果. 经市场调研可知: 在未来 20 天内,这种水果每箱的销售利润r(单位: 元)与时间t( $1 \le t \le 20$ , $t \in \mathbb{N}$ ,单位: 天)之间的函数关系式为 $r = \frac{1}{4}t + 10$ ,且日销售量p(单位: 箱)与时间t 之间的函数关系式为 $t = \frac{1}{4}t + 10$ ,且日销售量t 之间的函数关系式为 $t = \frac{1}{4}t + 10$ ,且日销售量 $t = \frac{1}{4}t + 10$ ,且日销售量

- (1) 求第几天的日销售利润最大?最大值是多少?
- (II) 在未来的这 20 天中,在保证每天不赔本的情况下,公司决定每销售 1 箱该水果就捐赠  $m(m \in \mathbb{N}^*)$  元 给 "精准扶贫"对象,为保证销售积极性,要求捐赠之后每天的利润随时间 t 的增大而增大,求 m 的取值范围.

#### (21) (本小题 15 分)

设函数 f(x) 的定义域为 D ,对于区间  $I = [a,b](a < b, I \subseteq D)$  ,若满足以下两条性质之一,则称 I 为 f(x) 的一个 "  $\Omega$  区间" .

性质 1: 对任意  $x \in I$  ,有  $f(x) \in I$  ;

性质 2: 对任意  $x \in I$ , 有  $f(x) \notin I$ .

(I) 分别判断区间[1,2]是否为下列两函数的" $\Omega$ 区间"(直接写出结论);

(1) 
$$y = 3 - x$$
; (2)  $y = \frac{3}{x}$ ;



- (II) 若[0, m](m > 0) 是函数  $f(x) = -x^2 + 2x$  的 "  $\Omega$  区间", 求 m 的取值范围;
- (III) 已知定义在**R**上,且图象连续不断的函数 f(x) 满足: 对任意  $x_1, x_2 \in \mathbf{R}$ ,且  $x_1 \neq x_2$ ,有  $\frac{f(x_2) f(x_1)}{x_2 x_1} < -1$ . 求证: f(x) 存在 "  $\Omega$  区间",且存在  $x_0 \in \mathbf{R}$ ,使得  $x_0$  不属于 f(x) 的所有 "  $\Omega$  区间".

## 参考答案

一、选择题: 本大题共10小题,每小题4分,共40分.

- 1. A
- 2. C
- 3. B
- 4. C
- 5. C

- 6. D
- 7. A
- 8. D
- 9. B
- 10. A

二、填空题: 本大题共5题,每小题5分,共25分.

11. [0,1)

- 12.60
- 13.  $\log_2 x$  (答案不唯一, 对数函数的底数  $a \in (1,4]$  即可)
- 14.  $(-\infty,0) \cup (2,+\infty)$ , -1 < a < 0
- 15. (1)(3)
- 注: 第14 题第一问 2 分, 第二问 3 分; 第15 题全部选对得 5 分, 不选或有错选得 0 分, 其他得 3 分.
- 三、解答题:本大题共6小题,共85分.其他正确解答过程,请参照评分标准给分.
- 16. (本小题 13 分)
  - 解:记事件A:某射手第i次打靶,命中9环,B:某射手第i次打靶,命中10 环,

其中
$$i=1,2$$
,则 $P(A_1)=P(A_2)=0.25$ , $P(B_1)=P(B_2)=0.2$ .

(I) 因为 $B_1$ ,  $B_2$ , 相互独立, 所以

$$P(B_1B_2) = P(B_1) \cdot P(B_2) = 0.2 \times 0.2 = 0.04$$
.

即连续打靶两次,命中20环的概率为0.04.

(II)连续打靶两次,命中不少于19环,可能第一次命中9环,第二次命中10环,可能第一次命中10环,第二次命中9环,还可能两次都命中10环,

因为 $A_1$ 与 $B_2$ , $B_1$ 与 $A_2$ , $B_1$ 与 $B_2$ 相互独立,且 $A_1B_2$ , $B_1A_2$ , $B_1B_2$ 互斥,因此

$$\begin{split} P(A_1B_2 + B_1A_2 + B_1B_2) &= P(A_1B_2) + P(B_1A_2) + P(B_1B_2) \\ &= P(A_1)P(B_2) + P(B_1)P(A_2) + P(B_1)P(B_2) \\ &= 0.25 \times 0.2 + 0.2 \times 0.25 + 0.2 \times 0.2 = 0.14 \; . \end{split}$$

即连续打靶两次,命中不少于19环的概率为0.14.

- 17. (本小题 15 分)
  - 解: (I)因为函数的定义域为**R**,所以 $x \in \mathbf{R}$ 时, $-x \in \mathbf{R}$ .

又因为
$$f(-x) = \frac{-x}{x^2 + 1} = -f(x)$$
,所以函数 $f(x)$ 是奇函数.

(II) 任取  $x_1, x_2 \in [1, +\infty)$ , 且  $x_1 < x_2$ , 则

$$f(x_1) - f(x_2) = \frac{x_1}{x_1^2 + 1} - \frac{x_2}{x_2^2 + 1} = \frac{x_1(x_2^2 + 1) - x_2(x_1^2 + 1)}{(x_1^2 + 1)(x_2^2 + 1)}$$
$$= \frac{x_1x_2^2 + x_1 - x_2x_1^2 - x_2}{(x_1^2 + 1)(x_2^2 + 1)} = \frac{(x_1x_2 - 1)(x_2 - x_1)}{(x_1^2 + 1)(x_2^2 + 1)}.$$



因为 $1 \le x_1 < x_2$ , 所以 $x_2 - x_1 > 0$ ,  $x_1 x_2 - 1 > 0$ ,

所以  $f(x_1) - f(x_2) > 0$ ,即  $f(x_1) > f(x_2)$ .

根据函数单调性定义,  $f(x) = \frac{x}{x^2 + 1}$  在  $[1, +\infty)$  上是减函数.

(III) f(x)在( $-\infty$ ,-1]上是减函数.

#### 18. (本小题 14分)

解: ( I ) 乙从 2017 年到 2022 年这 6 年的视力平均值为

$$\frac{4.86 + 4.90 + 4.86 + 4.84 + 4.74 + 4.72}{6} = 4.82.$$

(II) 甲的视力值比乙高 0.05 以上的年份有: 2017 年、2019 年、2021 年、2022 年.

从 2017 年到 2022 年这 6 年中随机选取 2 年,所有可能的结果有15 种,它们是: (2017,2018),(2017,2019),(2017,2020),(2017,2021),(2017,2022),(2018,2019),

(2018, 2020), (2018, 2021), (2018, 2022), (2019, 2020), (2019, 2021), (2019, 2022),

(2020, 2021), (2020, 2022), (2021, 2022).

用 A 表示"这两年甲的视力值都比乙高 0.05 以上"这一事件,则 A 中的结果有 6 个,它们是:

(2017,2019),(2017,2021),(2017,2022),(2019,2021),(2019,2022),(2021,2022),所以,所求得概率  $P(A) = \frac{6}{15} = \frac{2}{5}$ .

(III) 甲和乙的视力平均值从2017年开始连续三年的方差最小.

#### 19. (本小题 15 分)

解: ( I ) 当 c = 0 时,  $f(x) = |1 - \lg x|$ ,令  $|1 - \lg x| = 0$ ,解得 x = 10, 所以函数零点为 x = 10.

(II) 由己知, 
$$f(x) = \begin{cases} 1 - \lg x - c, & 0 < x \le 10, \\ \lg x - 1 - c, & x > 10, \end{cases}$$

当c > 0时,f(x)有两个零点 $x_1, x_2 (x_1 < x_2)$ ,

$$1 - \lg x_1 = c$$
,  $\lg x_2 - 1 = c$ ,  $fightharpoonup X_1 = 10^{1-c}$ ,  $x_2 = 10^{1+c}$ ,

所以 
$$4x_1 + x_2 = 4 \times 10^{1-c} + 10^{1+c} = \frac{40}{10^c} + 10 \times 10^c$$
  
 $\ge 2\sqrt{\frac{40}{10^c} \times 10 \times 10^c} = 40$ .

当且仅当 $\frac{40}{10^c} = 10 \times 10^c$ , 即 $c = \lg 2$ 时, 等号成立,

所以
$$4x_1 + x_2 \in [40, +\infty)$$
.

20. (本小题 13 分)



解: (I)设第t日的销售利润为f(t),则

$$f(t) = rp = (\frac{1}{4}t + 10)(120 - 2t) = -\frac{1}{2}t^2 + 10t + 1200 = -\frac{1}{2}(t - 10)^2 + 1250.$$

当t = 10时, $f(t)_{\text{max}} = 1250$ .

所以第10天的销售利润最大,最大值是1250元.

(II) 设捐赠之后第t日的销售利润为g(t),则

$$g(t) = (\frac{1}{4}t + 10 - m)(120 - 2t) = -\frac{1}{2}t^2 + (10 + 2m)t + 1200 - 120m.$$

依题意, m 应满足以下条件:

①  $m \in \mathbf{N}^*$ ;

② 
$$10 + 2m > \frac{19 + 20}{2} = 19.5$$
,  $\square m > 4.75$ ;

③ 
$$m \le \frac{1}{4}t + 10$$
 对于  $1 \le t \le 20, t \in \mathbb{N}$  均成立,即  $m \le 10.25$ .

综上 $5 \le m \le 10$ , 且 $m \in \mathbb{N}^*$ .



#### 21. (本小题 15 分)

解: ( I ) ①是, ②不是.

(II) 记I = [0,m],  $S = \{f(x) | x \in I\}$ , 注意到 $f(0) = 0 \in [0,m]$ ,

因此,若I为函数 f(x)的" $\Omega$  区间",则其不满足性质②,必满足性质①,

即  $S \subseteq I$ .

$$f(x) = -x^2 + 2x = -(x-1)^2 + 1$$
.

当0 < m < 1时,f(x)在I上单调递增,且f(m) - m = -m(m-1) > 0,

所以S = [0, f(m)]不包含于I = [0, m],不合题意;

当 $1 \le m \le 2$ 时, $S = [f(0), f(1)] = [0,1] \subseteq [0,m] = I$ ,合题意;

当m > 2时, f(m) < f(2) = f(0) = 0, 所以 $f(m) \notin I$ , 不合题意.

综上,  $m \in [1,2]$ .

(III) 对于任意区间 I = [a,b](a < b), 记  $S = \{f(x) | x \in I\}$ ,

依题意,f(x)在I上单调递减,则S = [f(b), f(a)].

因为
$$\frac{f(b)-f(a)}{b-a}$$
<-1,所以 $f(a)-f(b)>b-a$ ,

即 S 的长度大于 I 的长度, 故不满足性质①.

因此,如果I为f(x)的" $\Omega$ 区间",只能满足性质②,即 $S \cap I = \emptyset$ ,

即只需存在 $a \in \mathbf{R}$  使得f(a) < a, 或存在 $b \in \mathbf{R}$  使得f(b) > b.

因为 f(x) = x 不恒成立, 所以上述条件满足, 所以 f(x) 一定存在" $\Omega$  区间".

记 g(x) = f(x) - x, 先证明函数 g(x) 有唯一零点:

因为f(x)在**R**上单调递减,所以g(x)在**R**上单调递减.

若 f(0) = 0, 则  $x_0 = 0$  为 g(x) 的唯一零点;

若 f(0) = t > 0,则 f(t) < f(0) = t,即 g(0) > 0, g(t) < 0,

由零点存在定理,结合 g(x) 单调性,可知存在唯一  $x_0 \in (0,t)$ ,使得  $g(x_0) = 0$ ;

若 f(0) = t < 0,则 f(t) > f(0) = t,即 g(0) < 0, g(t) > 0,

由零点存在定理,结合 g(x) 单调性,可知存在唯一  $x_0 \in (t,0)$ ,使得  $g(x_0) = 0$ ;

综上,函数g(x)有唯一零点 $x_0$ ,即 $f(x_0) = x_0$ ,

已证 f(x) 的所有 "  $\Omega$  区间" I 都满足条件②,所以  $x_0 \notin I$ .

