北京市平谷区 2023 年学业水平考试统一练习（二）

数 学 试 卷

1．本试卷共 8 页，包括三道大题， 28 道小题，满分 100 分。考试时间 120 分钟。
注
2．在答题卡上准确填写学校名称，班级和姓名。
3．试题答案一律填涂或书写在答题卡上，在试卷上作答无效。
4．在答题卡上，选择题，作图题用 2 B 铅笔作答，其他试题用黑色字迹签字笔作答。
5．考试结束，请将试卷和答题卡一并交回。

一，选择题（本题共 16 分，每小题 2 分）

下面各题均有四个选项，其中只有一个是符合题意的．
1．下列几何体中，是圆雉的为
A．

B．

C．

D．

2．党的二十大报告中指出，2022年中国的科技实力实现了从跟跑到领跑的历史性跨越，研发经费持续增长，研发经费支出从一万亿元增加到二万八千亿元，居世界第二位。将 2800000000000 用科学记数法表示为
A． 0.28×10^{13}
B． 2.8×10^{11}
C． 2.8×10^{12}
D． 28×10^{11}

3．如图，直角三角板的直角顶点落在直线 $A B$ 上的点 C 处，$\angle 1=20^{\circ}$ ，则 $\angle 2$ 的大小为
A． 50°
B． 60°
C． 70°
D． 160°

4．实数 a, b 在数轴上的对应点的位置如图所示，下列结论中正确的是

A．$b<a$
B．$a<-2$
C．$a+b>0$
D．$-a>b$

5．袋子里有 2 个红球 1 个白球，除颜色外无其他差别，随机摸取两个，恰好为一个红球一个白球的概率是
A．$\frac{1}{2}$
B．$\frac{1}{3}$
C．$\frac{2}{3}$
D．$\frac{3}{4}$

6．若关于 x 的一元二次方程 $x^{2}+2 x+m=0$ 有两个实数根，则实数 m 的取值范围为
A．$m>1$
B．$m<1$
C．$m \geqslant 1$
D．$m \leqslant 1$

7．如图所示的地面由正六边形和四边形两种地砖镶嵌而成，则 $\angle B A D$ 的度数为

A． 50°
B． 60°
C． 100°
D． 120°

8．如图，一款旅行保温水壸，拧开瓶盖即为自带的小水杯，若满满一水壸水可以装满 4 水杯．现在水壸中还有一半的水，拧开瓶盖向小水杯中匀速的倒水，设水壸中剩余的水量为 y_{1}（毫升），水杯中的水量为 y_{2}（毫升），倒水的时间为 x（秒），则从开始倒水到水杯注满水的过程中，y_{1}, y_{2} 均是 x 的函数，它们随着 x 的变化而变化的过程可以
描述为
A．

C．

D．

二，填空题（本题共 16 分，每小题 2 分）

9．若 $\sqrt{x-3}$ 在实数范围内有意义，则实数 x 的取值范围是 \qquad ．
10．分解因式：$m x^{2}-m y^{2}=$ \qquad。

11．计算 $\left(1-\frac{3}{x}\right) \div \frac{x^{2}-9}{x^{2}}$ 的值为 \qquad .

12．直径为 10 分米的圆柱形排水管，截面如图所示．若管内有积水（阴影部分），水面宽 $A B$ 为 8 分米，则积水的最大深度 $C D$ 为 \qquad分米．

13．如图，在平面直角坐标系 $x O y$ 中，$A(1,1), B(2,2)$ ，双曲线 $y=\frac{k}{x}(k \neq 0)$ 与线段 $A B$ 有公共点，写出一个满足条件 k 的值 \qquad ．

14．某中学开展＂读书伴我成长＂活动，为了解八年级 200 名学生四月份的读书册数，对从中随机抽取的 20 名学生的读书册数进行调查，结果如下表：

册数／册	1	2	3	4	5
人数／人	2	5	7	4	2

根据统计表中的数据估计八年级四月份读书册数不少于 3 本的人数约有 \qquad人．

15．已知：如图，$\triangle A B C$ 的两条中线 $A F$ 与 $C E$ 相交于点 G ，连结 $E F$ ，则 $\frac{E G}{G C}=$ \qquad .

16．如图所示，某工厂生产镂空的铝板雕花造型，造型由 A （绣球花）， B （祥云）两种图案组合而成，因制作工艺不同，A，B 两种图案成本不同，厂家提供了如下几种设计造型，造型 1 的成本 64 元，造型 2 的成本 42 元，则造型 3 的成本为 \qquad元；若王先生选定了一个造型 1 作为中心图形， 6 个造型 2 分别位于中心图形的四周，其余部分用 n 个造型 3 填补空缺，若整个画面中，图案 B 的个数不多于图案 A 个数的 2 倍，且王先生的整体设计费用不超过 500 元，写出一个满足条件的 n 值 \qquad ．

造型1

造型 2

造型 3

三，解答题（本题共 68 分，第 $17-20, ~ 22, ~ 23$ 题，每题 5 分；第 $21, ~ 24, ~ 25, ~ 26$ 题，每题 6 分；

第27－28题，每题7分）

解答应写出文字说明，演算步骤或证明过程。
17．计算：$\left(\frac{1}{2}\right)^{-1}+4 \sin 45^{\circ}-\sqrt{8}+|-3|$ ．

18．解不等式组 ：$\left\{\begin{array}{l}2+x>7-4 x, \\ x<\frac{4+x}{2} .\end{array}\right.$

19．已知 $2 x^{2}-x-7=0$ ，求代数式 $x(x-3)+(x+1)^{2}$ 的值．

20．下面是证明三角形内角和定理推论 1 的方法，选择其中一种，完成证明。

三角形内角和定理推论 1 ：三角形的一个外角等于与它不相邻的两个内角的和。

已知：如图，$\triangle A B C$ ，点 D 是 $B C$延长线上一点．

求证：$\angle A C D=\angle A+\angle B$ ．

方法一：利用三角形的内角和定理进行证明

证明：

方法二：构造平行线进行证明

证明：

21．如图，直线 $A B / / C D, E$ 是 $A B$ 上一点，F 是 $C D$ 上一点，连接 $E F$ ，以 F 为圆心 $E F$ 长为半径画弧，在点 F 的右侧交直线 $C D$ 于点 G ，再分别以点 E 和点 G 为圆心，大于 $\frac{1}{2} E G$ 长为半径画弧，两弧交于点 H ，连接 $F H$ 交 $A B$ 于点 M ，连接 $M G$ 。
（1）使用直尺和圆规，依作法补全图形，判断四边形 $E F G M$ 的形状；
（2）证明（1）中的结论。

22．在平面直角坐标系 $x O y$ 中，直线 $y=-x+1$ 与 x 轴交于 A ，与 y 轴交于 B ．
（1）求 $A, ~ B$ 点坐标；
（2）点 A 关于 y 轴的对称点为点 C ，将直线 $B C$ 沿 y 轴向上平移 $t(t>0)$ 个单位，得到直线 l ，当 $x>-2$ 时都有直线 l 的值大于直线 $y=-x+1$ 的值，求 t 的取值范围．

23．快递使我们的生活更加便捷，可以说，快递改变了我们的生活．为了解我国的快递业务情况，我们收集了 2022 年 11 月全国 31 个省的快递业务数量（单位：亿件）的数据，并对数据进行了整理，描述和分析，给出如下信息。
a． 2022 年 11 月快递业务量排在前 3 位的省的数据分别为：

$$
275.2, \quad 225, \quad 74.8
$$

b．其余 28 个省份 2022 年 11 月的快递业务数量的数据的频数分布图如下：

c． 2022 年 11 月的快递业务数量的数据在 $10 \leqslant x<20$ 这一组的是：
10.3 ，11，
15．5，
$16.3, \quad 17.8$

根据以上信息，回答下列问题：
（1）补全条形统计图；
（2）2022年11月的 31 个省的快递业务数量的中位数为 \qquad ；
（3）若设图中 28 个省份平均数为 $\overline{x_{1}}$ ，方差为 s_{1}^{2} ；设 31 个省份的平均数为 \bar{x} ，方差为 s^{2} ，则 $\overline{x_{1}}$ \qquad \bar{x}, s_{1}^{2} \qquad s^{2} ．（填＂＞＂＂＝＂或＂＜＂）

24．如图，$A B$ 为 $\odot O$ 的直径，C 为 $\odot O$ 上一点，过点 B 作 $\odot O$ 的切线，交 $A C$ 的延长线于点 E ， F 为 $A E$ 的中点，连结 $B F$ 并延长交 $\odot O$ 于点 D ，连结 $C D$ 。
（1）求证：$\angle D=\angle E B C$ ；
（2）若 $\tan \angle D=\frac{1}{2}, B C=2$ ，求 $B F$ 的长．

25．某公园有一座漂亮的五孔桥，如图所示建立平面直角坐标系，主桥洞 L_{1} 与两组副桥洞分别位于 y 轴的两侧成轴对称摆放，每个桥洞的形状近似的可以看做抛物线，主桥洞 L_{1}上，y 与 x 近似满足函数关系 $y=a x^{2}+c(a \neq 0)$ 。经测量在主桥洞 L_{1} 上得到 x 与 y 的几组数据：

x（米）	-1.4	-1	0	1	1.4
$y($ 米 $)$	1.02	1.5	2	1.5	1.02

根据以上数据回答下列问题：
（1）求主桥洞 L_{1} 的函数表达式；
（2）若 L_{2} 的表达式：$y_{2}=-0.5\left(x-h_{1}\right)^{2}+0.98, \mathrm{~L}_{3}$ 的表达式：$y_{3}=-0.5\left(x-h_{2}\right)^{2}+0.5$ ，求五个桥洞的总跨度 $A B$ 的长．

26．已知抛物线 $y=-x^{2}+2 t x$ ，若点 $P\left(-1, y_{1}\right), Q\left(\frac{t}{2}, y_{2}\right), M\left(m, y_{3}\right)$ 在抛物线上．
（1）该抛物线的对称轴为 \qquad （用含 t 的式子表示）；
（2）若当 $m=2$ 时，$y_{3}=0$ ，则 t 的值为 \qquad ；
（3）若对于 $2 \leqslant m \leqslant 3$ 时，都有 $y_{1}<y_{3}<y_{2}$ ，求 t 的取值范围．

27．在 $\triangle A B C$ 中，$\angle A C B=90^{\circ}$ ，点 D 为 $B C$ 边上一点，E 为 $A C$ 延长线上的一点，$C E=C D$ ， F 为 $C B$ 边上一点，$E F \perp$ 射线 $A D$ 于点 K ，过点 D 作直线 $D G \perp A B$ 于 G ，交 $E F$ 于点 H ，作 $\angle A G D$ 的角平分线交 $A D$ 于 M ，过点 M 作 $A B$ 的平行线，交 $D G$ 于点 O ，交 $B C$ 于点 Q ，交 $E F$ 于点 $N, M O=N O$ ．
（1）找出图中和 $\angle D H K$ 相等的一个角，并证明；
（2）判断 $E H, ~ F N, ~ M D$ 的数量关系，并证明．

28．在平面直角坐标系 $x O y$ 中，对于 $\triangle O A B$ ，其中 $A(1, \sqrt{3}), B(2,0)$ ，给出如下定义：将 $O A$边绕点 O 逆时针旋转 60° 得到线段 $O C$ ，连接 $B C, B C$ 与 $\triangle O A B$ 的过点 A 的高线交于点 P ，将点 P 关于直线 $y=k x+b(k \neq 0)$ 对称得到点 Q ，我们称 Q 为 $\triangle O A B$ 的留缘点．
（1）若 $k=1, b=0$ ，请在图中画出 $\triangle O A B$ 的留缘点 Q ，并求出点 Q 的坐标；
（2）已知 $M(-3,0), N(-3,5)$ ，若线段 $M N$ 上存在 $\triangle O A B$ 的留缘点，求 b 的取值范围．

平谷区 2023 年二模试卷评分标准
 初 三 数 学

一，选择题（本题共 16 分，每小题 2 分）

二，填空题	题号		1	2	3	4	5	6	7 8	（本题共16 分，每小题2分）		
	答案		B	C	C	D	C	D	B A			
题号	9			10		11		12	13	14	15	16
答案	$x \geq 3$			$m(\mathrm{x}+y)(x-y)$		$\frac{x}{x+3}$		2	答案不唯 一，例如：	130	$\frac{1}{2}$	22；答案不

三，解答题（本题共 68 分，第 17－20，22，23题，每题 5 分，第 $21, ~ 24, ~ 25, ~ 26$ 题，每题 6 分，第 $27-28$ 题，每题 7 分）解答应写出文字说明，演算步骤或证明过程。

17．解：$\left(\frac{1}{2}\right)^{-1}+4 \sin 45^{\circ}-\sqrt{8}+|-3|$ ．
$=2+4 \times \frac{\sqrt{2}}{2}-2 \sqrt{2}+3$
$=5$ ． .5
（每个计算 1 分，最后结果 1 分，只写最后结果只得 1 分）
18．解不等式组：

$$
\left\{\begin{array}{l}
2+x>7-4 x \\
x<\frac{4+x}{2}
\end{array}\right.
$$

解（2）得 $2 x<4+x$ ．． 3
\qquad

19．先化简，再求值：
$x(x-3)+(x+1)^{2}$
$=x^{2}-3 x+x^{2}+2 x+1$
$=2 x^{2}-x+1$ ．． 3

20．方法一：

$\triangle \mathrm{ABC}$ 中，$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{ACB}=180^{\circ}$ ．． 2
$\because \angle \mathrm{ACD}+\angle \mathrm{ACB}=180^{\circ}$.4
$\therefore \angle \mathrm{ACD}=\angle \mathrm{A}+\angle \mathrm{B}$
方法二：

过点 C 作 $\mathrm{CE} / / \mathrm{AB}$ ．．． 2

21．（1）

\qquad
猜想：四边形 EFGM 为菱形
（2）解：由作图可知
EF＝FG，FH 平分 $\angle E F G$ ．． 4
$\because \mathrm{FH}$ 平分 $\angle \mathrm{EFG}$
$\therefore \angle \mathrm{EFM}=\angle \mathrm{GFM}$
$\because \mathrm{AB} / / \mathrm{CD}$
$\therefore \angle \mathrm{EVF}=\angle \mathrm{GFM}$
$\therefore \angle \mathrm{EMF}=\angle \mathrm{EFM}$
$\therefore \mathrm{EM}=\mathrm{EF}$
$\because E F=F G$
$\therefore \mathrm{EM}=\mathrm{FG}$
$\because E M / / F G$
\therefore 四边形 EFGM 是平行四边形
$\because E M=E F$

22．\because 一次函数 $y=-x+1$ 与 x 轴交于 A ，与 y 轴交于 B．

（3）点 A 关于 y 轴的对称点为点 C
$\therefore \mathrm{C}(-1,0)$
将直线 BC 沿 y 轴向上平移 $t(t>0)$ 个单位，得到直线 1
\therefore 设直线 1 的解析式为 $y=x+1+t$

一次函数 $y=-x+1$ 当 $\mathrm{x}=-2$ 时， $\mathrm{y}=3$
当 $y=x+1+t$ 过点 $(-2,3)$ 时， $\mathrm{t}=4$
$\therefore t \geq 4$ 时结论成立。

23．解：（1）

（3）$<,<$

24．（1）解：
$\because \mathrm{BE}$ 为 $\odot O$ 的切线
$\therefore \angle \mathrm{ABE}=90^{\circ}$
$\therefore \angle \mathrm{ABC}+\angle \mathrm{EBC}=90^{\circ}$
$\because A B$ 是直径
$\therefore \angle \mathrm{ACB}=90^{\circ}$
$\therefore \angle \mathrm{A}+\angle \mathrm{ABC}=90^{\circ}$

$\therefore \angle \mathrm{A}=\angle \mathrm{EBC}$
$\because C B=C B$
$\therefore \angle \mathrm{D}=\angle \mathrm{A}$
$\therefore \angle \mathrm{D}=\angle \mathrm{EBC}$
（2）
$\because \tan \angle D=\frac{1}{2}$
$\therefore \tan \angle E B C=\frac{1}{2}$
$\because \angle \mathrm{ACB}=90^{\circ}, \mathrm{BC}=2$
$\therefore \mathrm{CE}=1$
$\because \angle \mathrm{D}=\angle \mathrm{A}$
$\therefore \tan \angle A=\frac{1}{2}$

$\therefore A C=4$ 5
$\therefore A E=5$
Rt $\triangle \mathrm{AEB}$ 中，$\because \mathrm{F}$ 是 AE 的中点，$\angle \mathrm{ABE}=90^{\circ}$
$\therefore B F=\frac{1}{2} A E=2.5$ 6

25．（1）由表可知，抛物线 L_{1} 的顶点坐标为 $(0,2)$ \qquad
\therefore 抛物线 L_{1} 的解析式为 $y=a x^{2}+2$

$\therefore y=-0.5 x^{2}+2$

由题意抛物线 L_{2} 与抛物线 L_{1} 上 EF 之间的部分重合，所以 $\mathrm{EF}=2.8 \cdots \cdots \cdots \cdots \cdots \cdots .4$
由题意抛物线 L_{3} 与抛物线 L_{1} 上 CD 之间的部分重合，所以 $\mathrm{CD}=2 \ldots \ldots \ldots \ldots \ldots \ldots 5$
\therefore 五个桥洞的总跨度 AB 的长为 13.6 米．

26．（1）解：对称轴 $\mathrm{x}=\mathrm{t}$
1
（2）$t=1$.3
（3）
当 $\mathrm{t}<-1$ 时，$\because a<0$ ，点 P 和M都在对称轴的右侧， y 随 x 的增大而减小，此时 $\mathrm{y}_{1}>y_{3}$ ，不成立．

当 $-1<\mathrm{t}<0$ 时，$\because a<0$ ，点 p 在轴的左侧，点 M 在轴的右侧， P 到轴的距离比M到轴的距离近，此时 $\mathrm{y}_{1}>y_{3}$ ，不成立。

当 $0<\mathrm{t}<2$ 时，$\because a<0$ ，若 $\mathrm{y}_{1}<y_{3}<y_{2}$ ，则点M到轴的距离大于点 Q 到轴的距离，小于点 P 到轴的距离．

$$
t-\frac{t}{2}<2-t<3-t<t-1
$$

解得： $1<t<\frac{4}{3}$
当 $2<\mathrm{t}$ 时，$\because a<0$ ，若 $\mathrm{y}_{1}<y_{3}<y_{2}$ ，则只需点 M 到轴的距离大于点 Q 到轴的距离．
$t-\frac{t}{2}<t-2<t-3$
解得：$t>6$
$\therefore 1<t<\frac{4}{3}$ 或 $\mathrm{t}>6$

（数形结合，适当说理，思路清晰，即给分）

27.

（1）$\angle \mathrm{DHK}=\angle \mathrm{BAK}($ 或 $\angle \mathrm{DHK}=\angle 1)$ \qquad ．． 1

证明：
$\because \mathrm{AK} \perp \mathrm{EF}$
$\therefore \angle \mathrm{AKE}=90^{\circ}$
$\therefore \angle 3+\angle \mathrm{DHK}=90^{\circ}$ ．． 2
$\because \mathrm{HG} \perp \mathrm{AB}$
$\therefore \angle 2+\angle \mathrm{BAK}=90^{\circ}$
$\because \angle 2=\angle 3$
$\therefore \angle \mathrm{DHK}=\angle \mathrm{BAK}$ ． .3
（3）
结论： $\mathrm{MD}=\mathrm{EH}+\mathrm{FN}$ \qquad ．． 4

连结 GN
$\because \angle \mathrm{ACB}=\angle \mathrm{AKF}=90^{\circ}$
$\therefore \angle 4+\angle 5=90^{\circ}, \angle 6+\angle 7=90^{\circ}$
$\because \angle 5=\angle 6$
$\therefore \angle 4=\angle 7$
$\because \angle \mathrm{ACB}=\angle \mathrm{ECF}=90^{\circ}, \mathrm{CD}=\mathrm{CE}$

$\therefore \triangle \mathrm{ACD} \cong \triangle \mathrm{ECF}(\mathrm{AAS})$
$\because \mathrm{MN} / / \mathrm{AB}$
$\therefore \angle \mathrm{MOD}=\angle \mathrm{AHD}=90^{\circ}$
$\because \mathrm{OM}=\mathrm{ON}$
$\therefore \mathrm{DG}$ 垂直平分 MN
$\therefore \mathrm{MG}=\mathrm{NG}$
$\because \angle \mathrm{AGH}=90^{\circ}, ~ \mathrm{MG}$ 平分 $\angle \mathrm{AGH}$
$\therefore \angle \mathrm{AGM}=\angle \mathrm{GMN}=45^{\circ}$
$\therefore \angle \mathrm{AGM}=\angle \mathrm{HGN}=45^{\circ}$
$\because \angle \mathrm{DHK}=\angle \mathrm{BAK}, \mathrm{MG}=\mathrm{NG}$
$\therefore \triangle \mathrm{AMG} \cong \triangle \mathrm{HNG}(\mathrm{AAS})$
$\therefore \mathrm{AM}=\mathrm{HN}$
$\because \mathrm{AD}=\mathrm{EF}$
$\therefore \mathrm{MD}=\mathrm{EH}+\mathrm{NF}$ \qquad
其它辅助线作法依情况对应给分

28．解：（1）

由题意， $\mathrm{OB}=\mathrm{OC}, \angle \mathrm{BOC}=120^{\circ}$
$\because \mathrm{AH} \perp \mathrm{OB}$,
$\therefore \angle \mathrm{PHB}=90^{\circ}$
$\because \mathrm{BH}=1, \quad \therefore P\left(1, \frac{\sqrt{3}}{3}\right)$
\because 点 P 与点 Q 关于直线 $y=x$ 对称
$\therefore Q\left(\frac{\sqrt{3}}{3}, 1\right)$
（2）设直线 $\mathrm{y}=\mathrm{kx}+\mathrm{b}(\mathrm{k} \neq 0)$ 与 y 轴交于点 $\mathrm{K}(0, \mathrm{~b})$
则由题意，$\triangle \mathrm{OAB}$ 的所有留缘点在以 K 为圆心 KP 为半径的圆上，
若 $\mathrm{b}>0$

当圆 K 与线段 MN 相切时，
由题意，得 $\left(b-\frac{\sqrt{3}}{3}\right)^{2}+1^{2}=3^{2}$ ，解得 $b=2 \sqrt{2}+\frac{\sqrt{3}}{3}$ ．
$\therefore \mathrm{b} \geq 2 \sqrt{2}+\frac{\sqrt{3}}{3}$ ．
当点 $b<0$ 时，

由题意，$\left(-b+\frac{\sqrt{3}}{3}\right)^{2}+1^{2}=b^{2}+3^{2}$ ，解得 $b=-\frac{23 \sqrt{3}}{6}$ ．
$\therefore \mathrm{b} \leq-\frac{23 \sqrt{3}}{6}$ ．

