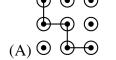
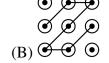
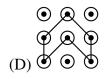


班级:_	学 是.	姓夕.	成绩:	
カエラス・		<u>/</u> _11 •	<i>IX</i> V-X:	

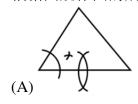
- -、选择题共 8 小题。在每小题列出的四个选项中,选出符合题目要求的一项。
 - 1. 下列手机手势解锁图案中, 是中心对称图形的是(

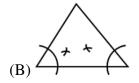


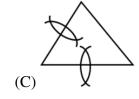


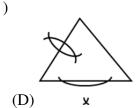


2. 根据圆规作图的痕迹,可用直尺成功找到三角形内心的是(

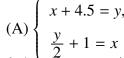


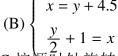


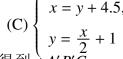




3. 《孙子算经》中有一道题: "今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足 一尺, 木长几何?"译文大致是:"用一根绳子去量一根木条, 绳子剩余 4.5 尺; 将绳子对折 再量木条,木条剩余1尺,问木条长多少尺?"如果设木条长x尺,绳子长y尺,根据题意 列方程组正确的是(

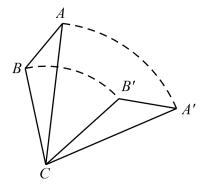






(A)
$$\begin{cases} x + 4.5 = y, \\ \frac{y}{2} + 1 = x \end{cases}$$
 (B)
$$\begin{cases} x = y + 4.5, \\ \frac{y}{2} + 1 = x \end{cases}$$
 (C)
$$\begin{cases} x = y + 4.5, \\ y = \frac{x}{2} + 1 \end{cases}$$
 (D)
$$\begin{cases} x + 4.5 = y, \\ x = \frac{y}{2} - 1 \end{cases}$$

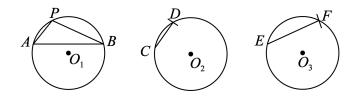
已知 AC = 6, BC = 4, 则线段 AB 扫过的图形的面积 为()



- $(A) \frac{2}{3}\pi$
 - (B) $\frac{8}{3}\pi$
- $(C) 6\pi$
- (D) $\frac{10}{3}$ π
- 5. 若分式方程 $\frac{3x}{x+1} = \frac{m}{x+1} + 2$ 无解,则 m 的值为 () (C) 0
 - (A) 1
- (C) 0

(D) -2

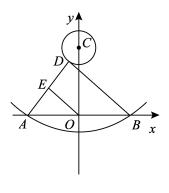
- 6. 已知一个二次函数图象经过 $P_1(-3,y_1)$, $P_2(-1,y_2)$, $P_3(1,y_3)$, $P_4(3,y_4)$ 四点, 若 $y_3 < y_2 < y_4$, 则 y_1,y_2,y_3,y_4 的最值情况是 ()
 - (A) y₃ 最小, y₁ 最大 (B) y₃ 最小, y₄ 最大 (C) y₁ 最小, y₄ 最大 (D) 无法确定
- 7. 已知 $\odot O_1$, $\odot O_2$, $\odot O_3$ 是等圆, $\triangle ABP$ 内接于 $\odot O_1$, 点 C, E 分别在 $\odot O_2$, $\odot O_3$ 上. 如图,



- ①以 C 为圆心, AP 长为半径作弧交 $\odot O_2$ 于点 D, 连接 CD; ②以 E 为圆心, BP 长为半径作弧交 $\odot O_3$ 于点 F, 连接 EF. 下面有四个结论:
- ① CD + EF = AB;
- $\widehat{(2)}$ \widehat{CD} + \widehat{EF} = \widehat{AB} ;
- $\textcircled{3} \angle CO_2D + \angle EO_3F = \angle AO_1B;$
- $\textcircled{4} \angle CDO_2 + \angle EFO_3 = \angle P.$

所有正确结论的序号是(

- (A) 1234
- (B) 123
- (C) 24
- (D) 234
- 8. 如图, 抛物线 $y = \frac{1}{9}x^2 1$ 与 x 轴交于 A, B 两点, D 是以点 C(0,4) 为圆心, 1 为半径的圆上的动点, E 是线段 AD 的中点, 连接 OE, BD, 则线段 OE 的最小值是 ()



(A) 2

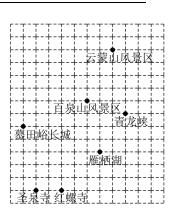
(B) $\frac{3\sqrt{2}}{2}$

(C) $\frac{5}{2}$

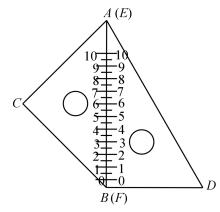
(D)3

- 二、填空题共8小题。
 - 9. 分解因式: 2x²-18 = _____.

10. 如图, 这是怀柔区部分景点的分布图, 若表示百泉山风景区的点的坐标为 (0,1), 表示慕田峪长城的点的坐标为 (-5,-1), 则表示雁栖湖的点的坐标为 .



- 11. 如果 $x^2 + x 5 = 0$, 那么代数式 $(1 + \frac{2}{x}) \div \frac{x+2}{x^3 + x^2}$ 的值是 ______.
- 12. 用一组 a, b 的值说明命题 "若 $\frac{a}{b} > 1$, 则 a > b" 是错误的, 这组值可以是 $a = ______$, $b = ______$.
- 13. 一副三角板按如图位置摆放, 将三角板 ABC 绕着点 B 逆时针旋转 α (0° < α < 180°), 如果 AB // DE, 那么 α =



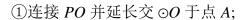
- 14. 完全相同的 3 个小球上面分别标有数 -2, -1, 1, 将其放入一个不透明的盒子中后摇匀, 再从中随机摸球两次 (第一次摸出球后放回摇匀), 两次摸到的球上数之和是负数的概率 是 ______.
- 15. 一般地, 如果 $x^4 = a(a \ge 0)$, 则称 x 为 a 的四次方根, 一个正数 a 的四次方根有两个. 它们 互为相反数, 记为 $\pm \sqrt[4]{a}$, 若 $\sqrt[4]{m^4} = 10$, 则 m =______.
- 16. 对于实数 p, q, 我们用符号 $\min\{p,q\}$ 表示 p, q 两数中较小的数, 如 $\min\{1,2\}=1$, 因此, $\min\{-\sqrt{2},-\sqrt{3}\}=$ _______; 若 $\min\{(x-1)^2,x^2\}=1$, 则 x=_______.
- 三、解答题共 12 小题。解答应写出文字说明、演算步骤或证明过程。
 - 17. 计算: $6\sin 60^{\circ} (\frac{1}{3})^{-2} \sqrt{12} + |2 \sqrt{3}|$.
 - 18. 解分式方程: $\frac{x-2}{x} 1 = \frac{2}{x+2}$.

19. 下面是小石设计的"过圆上一点作圆的切线"的尺规作图的过程.

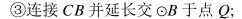
已知: 如图 $1, \odot O$ 及 $\odot O$ 上一点 P.

求作: 直线 PQ, 使得 PQ 与 ⊙O 相切.

作法: 如图 2,



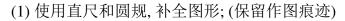
②在 $\odot O$ 上任取一点 B(点 P, A 除外), 以点 B 为圆心, BP 长为半径作 $\odot B$, 与射线 PO 的另一个交点为 C:



④作直线 PQ.

所以直线 PO 就是所求作的直线.

根据小石设计的尺规作图的过程,



(2) 完成下面的证明.

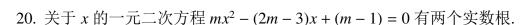
证明: 因为 CQ 是 $\odot B$ 的直径,

所以 ∠CPQ = _____。(______) (填推理的依据).

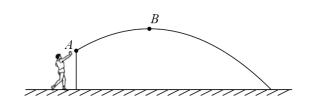
所以 $OP \perp PQ$.

又因为 OP 是 $\odot O$ 的半径.

所以 PQ 是 $\odot O$ 的切线 (_____) (填推理的依据).



- (1) 求 *m* 的取值范围;
- (2) 若 m 为正整数, 求此方程的根.
- 21. 为了在校运会中取得更好的成绩, 小丁积极训练. 在某次试投中铅球所经过的路线是如图所示的抛物线的一部分. 已知铅球出手处A 距离地面的高度是 $\frac{8}{5}$ 米, 当铅球运行的水



平距离为 3 米时,达到最大高度 $\frac{5}{2} \text{ 米的 } B$ 处. 小丁此次投掷的成绩是多少米?

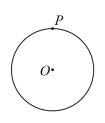


图 1

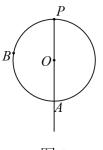
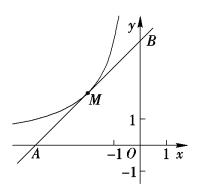


图 2

- 22. 如图, 在平面直角坐标系 xOy 中, 直线 y = x + m 与 x 轴 的交点为 A(-4,0), 与 y 轴的交点为 B, 线段 AB 的中点 M 在函数 $y = \frac{k}{x}$ ($k \neq 0$) 的图象上.
 - (1) 求 m, k 的值;
 - (2) 将线段 AB 向左平移 n 个单位长度 (n > 0) 得到线段 CD, A, M, B 的对应点分别为 C, N, D.
 - ①当点 D 落在函数 $y = \frac{k}{r}$ (x < 0) 的图象上时, 求 n 的值;
 - ②当 $MD \leq MN$ 时,结合函数的图象,直接写出 n 的取值范围.



- 23. 某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值 *s*,并对样本数据 (质量指标值 *s*) 进行了整理、描述和分析.下面给出了部分信息.
 - a. 该质量指标值对应的产品等级如下:

质量指标值	$20 \leqslant s < 25$	$25 \leqslant s < 30$	$30 \leqslant s < 35$	$35 \leqslant s < 40$	$40 \leqslant s \leqslant 45$
等级	等级 次品		一等品	二等品	次品

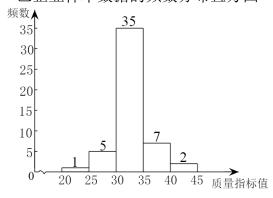
说明: 等级是一等品, 二等品为质量合格 (其中等级是一等品为质量优秀); 等级是次品为质量不合格.

- b. 甲企业样本数据的频数分布统计表如下 (不完整):
- c. 乙企业样本数据的频数分布直方图如下:

甲企业样本数据的频数分布表

分组	频数	频率
$20 \leqslant s < 25$	2	0.04
$25 \leqslant s < 30$	m	
$30 \leqslant s < 35$	32	n
$35 \leqslant s < 40$		0.12
$40 \leqslant s \leqslant 45$	0	0.00
合计	50	1.00

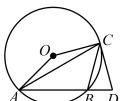
乙企业样本数据的频数分布直方图



d. 两企业样本数据的平均数、中位数、众数、极差、方差如下:

	平均数		众数	极差	方差	
甲企业	31.92	32.5	34	15	11.87	
乙企业	31.92	31.5	31	20	15.34	

- 24. 如图: $\triangle ABC$ 是 $\odot O$ 的内接三角形, $\angle ACB = 45^{\circ}$, $\angle AOC = 150^{\circ}$, 过点 C 作 $\odot O$ 的切线交 AB 的延长线于点 D.
 - (1) 求证: CD = CB;
 - (2) 如果 $\odot O$ 的半径为 $\sqrt{2}$, 求 AC 的长.



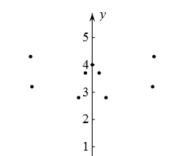
- 25. 小明根据学习函数的经验, 对函数 $y = x^4 5x^2 + 4$ 的图象与性质进行了探究. 下面是小明的探究过程, 请补充完整:
 - (1) 自变量 x 的取值范围是全体实数, x 与 y 的几组对应数值如下表:

x	 $-\frac{9}{4}$	$-\frac{11}{5}$	-2	$-\frac{3}{2}$	$-\frac{5}{4}$	-1	$-\frac{1}{2}$	$-\frac{1}{4}$
у	 4.3	3.2	0	-2.2	-1.4	0	2.8	3.7

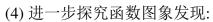
x	0	$\frac{1}{4}$	$-\frac{1}{2}$	1	<u>5</u>	$\frac{3}{2}$	2	<u>11</u> 5	9/4	
у	4	3.7	2.8	0	-1.4	-2.2	m	3.2	4.3	•••

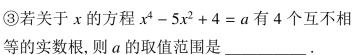
其中m= ;

(2) 如图, 在平面直角坐标系 *xOy* 中, 描出了以上表中各组对应值为坐标的点, 根据描出的点, 画出该函数的图象;

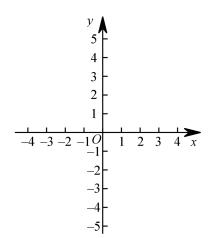


(3) 观察函数图象,写出一条该函数的性质: ;

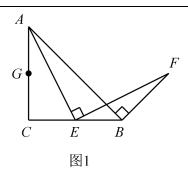


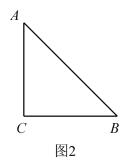


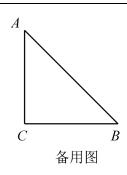
26. 在平面直角坐标系 xOy 中, 点 C 是二次函数 $y = mx^2 + 4mx + 4m + 1$ 的图象的顶点, 一次函数 y = x + 4 的图象与 x 轴、y 轴分别交于点 A, B.



- (1) 请你求出点 A, B, C 的坐标;
- (2) 若二次函数 $y = mx^2 + 4mx + 4m + 1$ 与线段 AB 恰有一个公共点, 求 m 的取值范围.
- 27. 在 $\triangle ABC$ 中, AC = BC, $\angle ACB = 90^\circ$, 点 E 在直线 BC 上 (B, C 除外), 分别经过点 E 和点 B 作 AE 和 AB 的垂线, 两条垂线交于点 F, 研究 AE 和 EF 的数量关系.
 - (1) 某数学兴趣小组在探究 AE, EF 的关系时, 运用"从特殊到一般"的数学思想, 他们发现当点 E 是 BC 的中点时, 只需要取 AC 边的中点 G (如图 1), 通过推理证明就可以得到 AE 和 EF 的数量关系, 请你按照这种思路直接写出 AE 和 EF 的数量关系;
 - (2) 那么当点 E 是直线 BC 上 (B, C 除外) (其它条件不变), 上面得到的结论是否仍然成立呢? 请你从"点 E 在线段 BC 上", "点 E 在线段 BC 的延长线", "点 E 在线段 BC 的反向延长线上"三种情况中, 任选一种情况, 在图 2 中画出图形, 并证明你的结论;
 - (3) 当点 E 在线段 CB 的延长线上时, 若 BE = nBC (0 < n < 1), 请直接写出 $S_{\triangle ABC}: S_{\triangle AEF}$ 的值.







- 28. 对于平面直角坐标系 xOy 中的点 M 和图形 W_1 , W_2 给出如下定义: 点 P 为图形 W_1 上一点, 点 Q 为图形 W_2 上一点, 当点 M 是线段 PQ 的中点时, 称点 M 是图形 W_1 , W_2 的 "中立点". 如果点 $P(x_1,y_1)$, $Q(x_2,y_2)$, 那么 "中立点"M 的坐标为 $(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})$. 已知, 点 A(-3,0), B(0,4), C(4,0).
- (1) 连接 BC, 在点 $D(\frac{1}{2},0)$, E(0,1), $F(0,\frac{1}{2})$ 中, 可以成为点 A 和线段 BC 的 "中立点" 的是;
- (2) 已知点 G(3,0), $\odot G$ 的半径为 2. 如果直线 y = -x + 1 上存在点 K 可以成为点 A 和 $\odot G$ 的 "中立点", 求点 K 的坐标;
- (3) 以点 C 为圆心, 半径为 2 作圆. 点 N 为直线 y = 2x + 4 上的一点, 如果存在点 N, 使得 y 轴上的一点可以成为点 N 与 $\odot C$ 的 "中立点", 直接写出点 N 的横坐标的取值范围.

