三帆中学初三数学 12 月统练

一，选择题

1．下列手机手势解锁图案中，是中心对称图形的是（ ）

2．拋物线 $y=(x+2)^{2}-1$ 的对称轴是（ ）
A．直线 $x=-1$
B．直线 $x=1$
C．直线 $x=-2$
D．直线 $x=2$

3．如图，$A B$ 为 $\odot O$ 的直径，点 C 在 $\odot O$ 上，若 $\angle A C O=50^{\circ}$ ，则 $\angle B$ 的度数为（）

A． 60°
B． 50°
C． 45°
D． 40°

4．如图，将 Rt $\triangle A B C$ 绕直角顶点 C 顺时针旋转 90° ，得到 $\triangle A^{\prime} B^{\prime} C^{\prime}$ ，连接 $A A^{\prime}$ ，若 $\angle 1=25^{\circ}$ ，则 $\angle B A C$ 的度数是（ ）

A． 20°
B． 25°
C． 30°
D． 35°

5．如图，将 $\triangle A B O$ 的三边扩大一倍得到 $\triangle C E D$（顶点均在格点上），它们是以点 P 为位似中心的位似图形，则点 P 的坐标是（）

A．$(0,3)$
B．$(0,8)$
C．$(0,2)$
D．$(0,-3)$

6．西周时期，丞相周公旦设置一种通过测定日影长度来确定时间的仪器，称为圭表．如图是一个根据北京的地理位置设计的圭表，其中立柱 $A C$ 高为 a ，冬至时北京的正午日光入射角 $\angle A B C$ 约为 26.5° ，则立柱根部与圭表的冬至线的距离（ $B C$ 的长）约为（）

A．$a \sin 26.5^{\circ}$
B．$\frac{a}{\tan 26.5^{\circ}}$
C．$a \tan 26.5^{\circ}$
D．$\frac{a}{\cos 26.5^{\circ}}$

7．下列是关于四个图案的描述：
图 1 所示是一个正三角形内接于圆；
图2 所示是一个正方形内接于圆；
图 3 所示是两个同心圆，其中小圆的半径是外圈大圆半径的三分之二；
图4所示是太极图，俗称＂阴阳鱼＂，该图案关于外圈大圆的圆心中心对称。

图 1

图2

图 3

图4

这四个图案中，阴影部分的面积不小于该图案外圈大圆面积一半的是（）
A．图 1 和图 3
B．图 2 和图 3
C．图 2 和图 4
D．图 1 和图 4

8．小明乘坐摩天轮一圈，他离地面的高度 y（米）与旋转时间 x（分）之间的关系可以近似地用二次函数来刻画。经测试得出部分数据如下表：

x（分）	\cdots	2.66	3.23	3.46	\cdots
y（米）	\cdots	69.16	69.62	68.46	\cdots

下列选项中，最接近摩天轮转一圈的时间的是（ ）
A． 5.5 分
B． 6 分
C． 6.5 分
D． 3 分

二，填空题

9．如图，$A C$ 与 $B D$ 相交于点 $E, A D / / B C$ ，若 $A E=2, A C=5, A D=3$ ，则 $B C$ 的长度是 \qquad .

10．有一个二次函数的图象，三位同学分别说出了它的一些特点：
甲：对称轴为直线 $x=4$ ；
乙：与 x 轴两个交点的横坐标都是整数；
丙：与 y 轴交点的纵坐标也是整数。
请你写出满足上述全部特点的一个二次函数表达式 \qquad ．
11．如图，圆形铁片与直角三角尺，直尺紧靠在一起平放在桌面上，已知铁片的圆心为 O ，三角尺的直角顶点 C 落在直尺的 10 cm 处，铁片与直尺的唯一公共点 A 落在直尺的 14 cm 处，铁片与三角尺的唯一公共点为 B ，则弧 $A B$ 的长度为 \qquad cm ．

12．某农科院在相同条件下做了某种苹果幼树移植成活率的试验，结果如下：

移植总数	100	400	750	1500	3500	7000	9000	14000
成活数	83	314	606	1197	2810	5613	7194	11208
成活的频率	0.83	0.785	0.808	0.798	0.803	0.802	0.799	0.801

那么该苹果幼树移植成活的概率估计值为 \qquad ．（结果精确到 0.1 ）
13．如图，在 Rt $\triangle A B C$ 中，$\angle A C B=90^{\circ}, C D$ 是 $A B$ 边上的中线，$A C=8, B C=6$ ，则 $\angle A C D$ 的正弦值是
\qquad ．

14．《九章算术》是中国古代的数学专著，它奠定了中国古代数学的基本框架，以计算为中心，密切联系实际，以解决人们生产，生活中的数学问题为目的。书中记载了这样一个问题：＂今有句五步，股十二步。问句中容方几何．＂其大意是：如图，Rt $\triangle A B C$ 的两条直角边的长分别为 5 和 12 ，则它的内接正方形 $C D E F$ 的边长为 \qquad －

15．若关于 x 的一元二次方程 $x^{2}-4 x+3-t=0$ 在 $0<x<\frac{7}{2}$ 的范围内有且仅有一个实根，则实数 t 的取值范围是 \qquad ．

16．在平面直角坐标系 $x O y$ 中，$A(-m, 0), B(m, 0)$（其中 $m>0$ ），点 P 在以点 $C(3,4)$ 为圆心，半径等于 2的圆上，如果动点 P 满足 $\angle A P B=90^{\circ}$ ．
（1）线段 $O P$ 的长等于 \qquad ．（用含 m 的代数式表示）；
（2）m 的最小值为 \qquad ．

三，解答题

17．计算： $4 \sin 30^{\circ}-\sqrt{2} \cos 45^{\circ}-\sqrt{3} \tan 30^{\circ}+2 \sin 60^{\circ}$ ．

18．如图，在四边形 $A B C D$ 中，$A D / / B C, \angle B=\angle A C B$ ，点 $E, ~ F$ 分别在 $A B, ~ B C$ 上，且 $\angle E F B=\angle D$ ．
（1）求证：$\triangle E F B \backsim \triangle C D A$ ；
（2）若 $A B=20, A D=5, B F=4$ ，求 $E B$ 的长．

19．抛物线 $y=a x^{2}+b x+c$ 上部分点的横坐标 x ，纵坐标 y 的对应值如下表：

x	\cdots	-4	-3	-2	-1	0	1	\cdots
y	\cdots	-5	0		4	3	0	\cdots

（1）把表格填写完整；
（2）根据上表填空：
（1）在对称轴右侧，y 随 x 增大而 \qquad ；
（2）当 $-2<x<2$ 时，则 y 的取值范围是 \qquad .
（3）确定拋物线 $y=a x^{2}+b x+c$ 的解析式．

20．如图，D 是等边三角形 $A B C$ 内一点，将线段 $A D$ 绕点 A 顺时针旋转 60° ，得到线段 $A E$ ，连接 $C D, ~ B E$ ．
（1）求证：$\angle A E B=\angle A D C$ ；
（2）连接 $D E$ ，若 $\angle A D C=105^{\circ}$ ，求 $\angle B E D$ 的度数．

21．阅读下文并解答问题：
小丽袋子中卡片上分别标有 $1, ~ 2, ~ 3, ~ 4$ ；小兵袋子中卡片上分别标有 $1, ~ 2, ~ 3$ ．小冬先从小丽的袋子中抽出一张卡片，再从小兵的袋子中抽出一张卡片，分别用 $a, ~ b$ 表示从小丽，小兵袋子中抽出的卡片上标有的数字．
（1）请用树状图或列表法写出 (a, b) 的所有取值情况；
（2）求在 (a, b) 中使关于 x 的一元二次方程 $x^{2}-a x+2 b=0$ 有实数根的概率．

22．已知点 $A, ~ B(A B<2)$ ，现没有直尺，只有一把生锈的圆规，仅能做出半径为 1 的圆，能否在平面内找
到一点 F ，使得 $\triangle A B F$ 是等边三角形？
小天经过探究完成了以下的作图步骤：
第一步：分别以点 $A, ~ B$ 为圆心， 1 为半径作圆，两圆交于点 C ；
第二步：以 C 为圆心， 1 为半径作圆交第一步中的两圆于点 $D, ~ E$ ；
第三步：分别以 $D, ~ E$ 为圆心， 1 为半径作圆，两圆交于点 $C, ~ F$ ．
（1）请将图补充完整，并作出 $\triangle A B F$ ；
（2）以下说法中，
（1）点 C 在线段 $A B$ 的垂直平分线上；
（2）$\triangle C A D$ 和 $\triangle C B E$ 都是等边三角形；
（3）点 C 在线段 $A F$ 的垂直平分线上；
（4）$\triangle A B F$ 是等边三角形。
正确的有 \qquad ．（填上所有正确的序号）

23．某文具店销售一种进价为每本 10 元的笔记本，为获得高利润，以不低于进价进行销售，结果发现，每月销售量 y 与销售单价 x 之间的关系可以近似地看作一次函数：$y=-5 x+150$ ，物价部门规定这种笔记本每本的销售单价不得高于 18 元。
（1）当每月销售量为 70 本时，获得的利润为多少元？
（2）该文具店这种笔记本每月获得利润为 w 元，求每月获得的利润 w 与销售单价 x 之间的函数关系式，并写出自变量的取值范围；
（3）当销售单价定为多少元时，每月可获得最大利润，最大利润为多少元？

24．如图，以 $A B$ 为直径的半圆上有一点 C ，连接 $A C$ ，点 P 是 $A C$ 上一个动点，连接 $B P$ ，作 $P D \perp B P$ 交 $A B$于点 D ，交半圆于点 E ．已知：$A C=5 \mathrm{~cm}$ ，设 $P C$ 的长度为 $x \mathrm{~cm}, P D$ 的长度为 $y_{1} \mathrm{~cm}, P E$ 的长度为 $y_{2} \mathrm{~cm}$（当点 P 与点 C 重合时，$y_{1}=5, y_{2}=0$ ，当点 P 与点 A 重合时，$y_{1}=0, y_{2}=0$ ）

小青同学根据学习函数的经验，分别对函数 y_{1}, y_{2} 随自变量 x 变化而变化的规律进行了探究．
下面是小青同学的探究过程，请补充完整：
（1）按照下表中自变量 x 的值进行取点，画图，测量，分别得到了 y_{1}, y_{2} 与 x 的几组对应值，请补全表格：

x / cm	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
y_{1} / cm	5	2.85	1.98	1.52	1.21	0.97	0.76	0.56	0.37	0.19	0
y_{2} / cm	0	0.46		1.29	1.61	1.84	1.96	1.95	1.79	1.41	0

（2）在同一平面直角坐标系 $x O y$ ，描出补全后的表中各组数值所对应的点 $\left(x, y_{1}\right),\left(x, y_{2}\right)$ ，并画出函数 y_{1} ， y_{2} 的图象；

（3）结合函数图象，解决问题：
（1）当 $P D, P E$ 的长都大于 1 cm 时，$P C$ 长度的取值范围约是 \qquad ；
（2）点 $C, ~ D, ~ E$ 能否在以 P 为圆心的同一个圆上？ \qquad （填＂能＂或＂否＂）

25．如图，$A B$ 是 $\odot O$ 的直径，$\triangle A B C$ 内接于 $\odot O$ ，点 D 在 $\odot O$ 上，$B D$ 平分 $\angle A B C$ 交 $A C$ 于点 $E, D F \perp B C$交 $B C$ 的延长线于点 F ．
（1）求证：$F D$ 是 $\odot O$ 的切线；
（2）若 $B D=4, \cos \angle D B F=\frac{4}{5}$ ，求 $D E$ 的长．

26．已知：二次函数 $C_{1}: y_{1}=a x^{2}+2 a x+a-1(a \neq 0)$ ．
（1）求二次函数 C_{1} 的对称轴，并写出顶点坐标；
（2）已知二次函数 C_{1} 的图象经过点 $A(-3,1)$ ．
（1）求 a 的值；
（2）点 B 在二次函数 C_{1} 的图象上，点 $A, ~ B$ 关于对称轴对称，连接 $A B$ ．二次函数 $C_{2}: y_{2}=k x^{2}+k x(k \neq 0)$的图象，与线段 $A B$ 只有一个交点，求 k 的取值范围．

27．已知 C 为线段 $A B$ 中点，$\angle A C M=\alpha$ ．Q 为线段 $B C$ 上一动点（不与点 B 重合），点 P 在射线 $C M$ 上，连接 $P A, P Q$ ．记 $B Q=k C P$ ．
（1）若 $\alpha=60^{\circ}, k=1$ ，
（1）如图 1，当 Q 为 $B C$ 中点时，求 $\angle P A C$ 的度数；
（2）直接写出 $P A, ~ P Q$ 的数量关系；
（2）如图 2，当 $\alpha=30^{\circ}$ 时，写出一个 k 的值，使得对于任意的点 Q 总有（2）中的结论成立，并证明．

图1

图2

28．定义：对于平面直角坐标系 $x O y$ 上的点 $P(a, b)$ 和拋物线 $y=x^{2}+a x+b$ ，我们称 $P(a, b)$ 是抛物线 $y=x^{2}+a x+b$ 的相伴点，抛物线 $y=x^{2}+a x+b$ 是点 $P(a, b)$ 的相伴拋物线．

如图，已知点 $A(2,-2), B(-4,-2), C(-1,4)$ ．
（1）点 A 的相伴抛物线的解析式为
过 $A, ~ B$ 两点的抛物线 $y=x^{2}+a x+b$ 的相伴点坐标为 \qquad ；
（2）设点 $P(a, b)$ 在直线 $A C$ 上运动；
（1）点 $P(a, b)$ 的相伴抛物线的顶点都在同一条抛物线 Ω 上，求抛物线 Ω 的解析式．
（2）当点 $P(a, b)$ 的相伴抛物线的顶点落在 $\triangle A B C$ 内部时，请直接写出 a 的取值范围．

