2023 北京清华附中高一(上)统练二

化. 学

2023.12

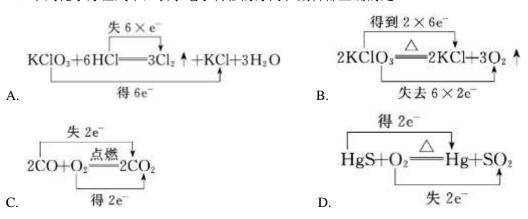
可能用到的相对原子质量 H-1 N-14 O-16 S-32 Fe-56

- 一、单项选择题(本题包括 25 小题, 共 50 分)
- 1. 氧化还原反应的实质是
- A.化合价的升降 B.分子中各原子重新组合
- C.电子的得失或偏移 D.氧原子的得失
- 2. 在含下列离子的溶液中,分别加入单质Na 之后,下列离子数目明显减少的是
- A. $N0^{-3}$
- B. Na⁺
- C. Ba²⁺ D. Mg²⁺
- 3. 下列叙述正确的是
- A. NH₃ 的摩尔质量为 17g
- B. Na₂O₂ 是碱性氧化物, SO₂ 是酸性氧化物
- C. 1mol 镁与足量稀硫酸反应产生 22.4 L H2
- D. 常温常压下,17g OH⁻含有的电子数约为 6.02×10^{24}
- 4. 在下列有FeCl₃ 溶液参加的反应中,与 Fe³⁺的氧化性无关的是
- A. FeCl₃ 溶液与 Fe 反应

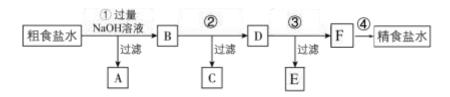
- B. FeCl₃ 溶液使淀粉 KI 溶液变蓝
- C. FeCl₃ 溶液滴入沸水中制得 Fe(OH)₃ 胶体 D. FeCl₃ 溶液用于腐蚀含铜电路板
- 5. 下列有关铁的说法中正确的是()
- A. 铁与水蒸气反应的产物是 Fe_2O_3
- B. 铁和稀硫酸反应的离子方程式为 $2Fe + 6H^{\dagger} = = 2Fe^{3^{\dagger}} + 3H_{2}$
- C. 铁在纯氧中燃烧生成 Fe₃O₄
- D. 常温下, Fe 与H2O 不反应, 但在空气中 O2、H2O 的共同作用生成 Fe3O4
- 6. 下列两种物质反应, 若改变条件(反应物用量比或温度)产物不会改变的是
- A. 钠与氧气
- B. 铁与氯气 C.CO₂ 与氢氧化钠溶液 D. 木炭与氧气

- 7. 下列微粒中, 既具有氧化性又具有还原性的是
- A. Fe^{2+}
- $B. H^+$
- C. Cl
- D. Na

8. 某溶液中只含有大量的下列离子: Fe^{3+} 、 NO_3^- 、 K^+ 和M离子, 经测定 Fe^{3+} 、 NO_3^- 、 K^+ 和M离子的物质 的量之比为 2:5:1:1, 则M离子可能是下列中的


- A. Cl⁻
- B. SO₄²-
- C. Ca²⁺
- D. Na+

9. 己知下述三个实验均能发生化学反应: ①将光亮铁钉放入硫酸铜溶液中; ②向硫酸亚铁溶液中滴入几滴 氯水; ③将铜丝放入氯化铁溶液中。下列判断正确的是


- A. 实验①中铁做氧化剂
- B. 实验②中 Fe²⁺表现还原性
- C. 实验③中发生的是置换反应 D. 上述实验证明氧化性: $Fe^{3+} > Fe^{2+} > Cu^{2+}$

- 10. 下列各组中两稀溶液间的反应可以用同一个离子方程式表示的是
- A. H₂SO₄溶液(足量)与K₂CO₃溶液; HNO₃溶液(足量)与Na₂CO₃溶液
- B. CH₃COOH溶液与KOH溶液; 盐酸与NaOH溶液
- C. BaCl₂溶液与Na₂SO₄溶液; Ba(OH)₂溶液与H₂SO₄溶液
- D. H₂SO₄溶液与澄清石灰水; H₂SO₄溶液与石灰乳悬浊液
- 11. 常温下,下列各组离子在指定溶液中能大量共存的是()
- A. 澄清透明酸性溶液: Na⁺、K⁺、Fe³⁺、NO₃
- B. 0.1 mol·L⁻¹ Na₂CO₃ 溶液:K⁺、Ba²⁺、NO₃ 、Cl⁻
- C. 使酚酞变红的溶液: NH₄+、Fe³⁺、NO₃、Cl⁻
- D. 0.1 mol·L⁻¹ HCl 溶液中:K⁺、Fe²⁺、MnO⁻₄、SO₄²⁻
- 12. 下列化学方程式中,表示电子转移的方向和数目都正确的是

- 13. 下列变化需要加入还原剂才能实现的是
- A. $CO_{3}^{2} \rightarrow CO_{2}$ B. $Cr_{2}O_{7}^{2-} \rightarrow Cr_{3}^{3+}$ C. $Cl^{-} \rightarrow Cl_{2}$ D. $NH_{3} \rightarrow NO_{3}$
- 14. 在反应H₂S+H₂SO₄ = S↓+SO₂↑+2H₂O 中,若有 32g 硫生成,则转移电子的物质的量为
- A.6 mol B.2 mol C.3 mol D.4 mol
- 15. 下列离子方程式正确的是
- A. 向CaCl₂ 溶液中通入 CO₂: Ca²⁺+H₂O+CO₂ = CaCO₃↓+2H⁺
- B. Ca(OH)₂ 溶液与足量 NaHCO₃ 溶液反应:2OH-+Ca²⁺+2HCO-₃ = CaCO₃↓+2H₂O + CO²₃-
- C. Fe(OH)₃ 溶液与HI 溶液反应: Fe(OH)₃+3H⁺=Fe³⁺+3H₂O
- D. "84"消毒液不能与洁厕灵(浓盐酸)混合使用: ClO +H++ Cl = Cl2↑ + OH
- 16. 下列有关离子的检验方法和判断正确的是()
- A.向溶液中加入稀盐酸,产生能使澄清石灰水变浑浊的无色气体,证明该溶液中含有 CO23-
- B.向溶液中加入盐酸酸化的 BaCl₂ 溶液,有白色沉淀生成,证明该溶液中含有 SO²₄-
- C.向无色溶液中加入紫色石蕊溶液显红色,证明该溶液溶质一定是种酸
- D.向溶液中依次加入硝酸和 AgNO3 溶液,有白色沉淀生成,证明该溶液中含有 CI
- 17. 为除去粗食盐水中的 Ca^{2+} 、 Mg^{2+} 、 SO_4^{2-} 等离子,以制得精食盐水。某同学设计如下方案:

下列说法正确的是(

- A. ①的主要目的是除去 Mg²⁺
- B. ②加入的是Na₂CO₃ 溶液, ③加入的是 BaCl₂ 溶液, ④加入的是盐酸
- C. C 中只有 BaSO₄, E 中只有 CaCO₃
- D.F 中只有OH、Cl、Na+这三种离子
- 18. 通过对实验现象的观察、分析推理得出正确的结论是化学学习的方法之一。对下列实验事 实的解释正确的是(_)

选项	操作、现象	解释			
Α	向淀粉 KI 溶液中加入 FeCl3 溶液,溶 液变蓝	Fe ³⁺ 能与淀粉发生显色反应			
В	把生铁放置于潮湿的空气中,铁表面 有一层红棕色的斑点	铁在潮湿的空气中易生成 Fe(OH) ₃			
С	足量 Fe 在少量Cl ₂ 中燃烧,铁有剩余	Fe 被氧化为 Fe ²⁺			
D	新制 Fe(OH)2 露置于空气中一段时 间,白色物质变成了红	说明 Fe(OH)2 易被 O2 氧化成 Fe(OH)3			
	褐色				

19. NaNO₂ 像食盐一样有咸味,毒性很强,误食会导致血红蛋白中的 Fe^{2+} 转化为 Fe^{3+} ,可服用 维生素C 解毒。关于该过程的叙述不正确的是

- A.亚硝酸钠的氧化性强于 Fe3+
- B.维生素 C 是还原剂
- C.维生素 C 的还原性强于 Fe2+
- D.亚硝酸钠是还原剂
- 20. 将 SO₂ 气体与足量 Fe₂(SO₄)₃ 溶液完全反应后,再加入 K₂Cr₂O₇ 溶液,发生如下两个化学 反应: SO₂ +2Fe³⁺+2H₂O===SO²₄ +2Fe²⁺+4H⁺,

 $Cr_2O_7^2 + 6Fe^{2^+} + 14H^+ = = 2Cr^{3^+} + 6Fe^{3^+} + 7H_2O_0$

下列有关说法正确的是

A. 还原性: Cr³⁺>Fe²⁺>SO₂

- B. 氧化性: Cr₂O²⁻>SO²₄->Fe³⁺
- C. Cr₂O₇²⁻能将Na₂SO₃ 氧化成 Na₂SO₄
- D. 两个反应中 Fe2(SO4)3 均做还原剂
- 21. 已知在酸性溶液中,下列物质氧化KI时,自身发生如下变化 $Fe^{3+} \rightarrow Fe^{2+}$; $MnO_4^- \rightarrow Mn^{2+}$; $Cl_2 \rightarrow$
- $2Cl^{-}$; $HNO_3 \rightarrow NO$ 。如果分别用等物质的量的这些物质(微粒)氧化足量的KI,得到I₂最多的是
- A. Fe³⁻
- B. MnO_4
- $C. Cl_2$
- D. HNO₃

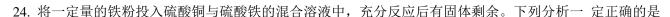
22. R_2O_4 **在酸性溶液中与 MnO_4 反应,反应产物为 RO_2 、 Mn^{2+} 、 H_2O 。已知反应中氧化剂与还原剂的物质的量之比为 2:5,则x 为

A.1

B.2

C.3

D.4


23. 常温下,在两份相同的 Ba(OH)2 溶液中,分别滴入物 质的量浓度相等的H2SO4、NaHSO4 溶液,其导

电能力随 滴入溶液体积变化的曲线如图所示。下列分析不正确的是

- A. ①代表滴加 H₂SO₄ 溶液的变化曲线
- B. b 点对应的离子方程式为:

 $Ba^{2+} + OH^{-} + H^{+} + SO_{4}^{2-} = BaSO_{4} + H_{2}O_{4}$

- C. c 点, 两溶液中含有相同量的 OH⁻
- D. a、d 两点对应的溶液均显中性

- A. 剩余固体中只含未反应的铁粉
- B. 反应后的溶液中只有一种溶质

C. 剩余固体中只含有铜

- D. 反应后的溶液中不可能含有 Fe3+
- 25. 将 $1.12 \, g$ 铁粉加入到 $25 \, \text{mL} \, 2 \, \text{mol} \cdot \text{L}^{-1}$ 的氯化铁溶液中,充分反应后,其结果是
- A. 铁粉剩余,溶液呈浅绿色,Cl⁻基本不变
- B. 向溶液中滴入无色KSCN 溶液,仍无色
- C. 溶液中 Fe^{2^+} 与 Fe^{3^+} 物质的量之比为 6:1
- D. 氧化产物与还原产物的物质的量之比为 2:5
- 二、填空题(本大题共 4 小题, 共 50 分)
- 26. (13 分) 按要求填空
- (1) 宇航员常用过氧化钠作供氧剂,写出过氧化钠与水反应的化学方程式 ________,1 $mol Na_2O_2$ 参与反应,转移电子数为_______(用 N_A 表示阿伏加德罗常数);
- (2) 自来水公司常用氯气对自来水杀菌消毒,写出该反应的离子方程式
- (3) NaHCO₃与NaOH反应的离子方程式为
- (4) 在钢铁厂生产中,炽热的铁水注入模具之前,模具必须进行充分的干燥处理,不得留有水,否则会 发生爆炸事故,用化学方程式解释其中的原因
- (5) 向KI 溶液中,滴加 FeCl3 溶液,溶液变棕黄色,写出反应的离子方程式
- (6) 实验室配制 FeSO₄ 溶液时根据需要加入一定量 H₂SO₄, 久置的 FeSO₄ 溶液发黄, 原因是酸性条件下被空气氧化,离子方程式为
- 27. (11 分)电子工业中,人们常用 FeCl₃ 溶液蚀刻印刷电路板,并进一步从腐蚀液中回收 Cu 和FeCl₃ 溶液。实验室模拟流程如图所示:

回答下列问题:

- (1) 写出 FeCl₃ 溶液蚀刻镀铜电路板的离子方程式
- (2) 滤渣 1 成分为_____(填化学式); 试剂Y 为_____(填名称)。

(3) 写出滤液 2 中通入气体 Z 的离子方程式 (4) 可替代气体 Z 的试剂为_____(填字母)。 A.硝酸溶液 B.酸性高锰酸钾溶液 C.过氧化氢溶液 (5) 若取 2mL 滤液1 加入试管中, 然后滴加足量氢氧化钠溶液, 产生的现象是____, 此过程涉及到的 属于氧化还原反应的化学方程式是____。 28. (13 分)某小组利用MnO₂和浓HCl及如图装置制备Cl₂。 (2) (1) (3) (4) (5) (1) 下列说法不正确的是 A. ①中所用装置为长颈漏斗和圆底烧瓶 B. ②中盛放NaOH溶液,可以除去氯气中的氯化氢气体 C. ③中盛放浓硫酸可以除去氯气中的水蒸气 D. ④是利用向上排空气法收集氯气 (2) 该方法制氯气的离子方程式 该反应中氧化剂与还原剂的物质的量之比为_____,装置①中反应生成标准状况下氯气的体积为 13.44 L, 则需消耗 HCl 的物质的量为_____mol。 (4) 常温下还可用Co₂O₃ 制备 Cl₂,反应前后共存在六种微粒: Co₂O₃、H₂O、Cl₂、H⁺、Cl⁻和Co²⁺,该 反应的离子方程式为 (5) $Na_2S_2O_3$ 还原性较强,在溶液中易被 Cl_2 氧化成 SO_4^2 ,常用作脱氯剂,该反应的离子方程式为: 29. (13 分) 甲同学进行 Fe²⁺还原性的实验,针对异常现象进行探究。 步骤一:制取 FeCl₂ 溶液。向 0.1 mol·L⁻¹ FeCl₃ 溶液中加足量铁粉振荡,静置后取上层清液,测 得 pH<1 ∘ 步骤二: 向 2 mL 该 FeCl₂ 溶液中滴加 2 滴 0.1 mol•L⁻¹ KSCN 溶液, 无现象; 再滴加 5 滴 5% H₂O₂ 溶 液(物质的量浓度约为 $1.5 \text{ mol} \cdot \text{L}^{-1}$ 、pH 约为 5),观察到溶液变红,大约 10 秒左右红 色褪去,有气体 生成(经检验为 O2)。 (1) 用离子方程式表示步骤一制取 FeCl₂ 的反应原理 (2) 用离子方程式补齐步骤二中溶液变红的原因: _____、 $Fe^{3+}+3SCN^{-}=Fe(SCN)_3$ 。 (3) 甲探究步骤二中溶液褪色的原因: I. 取褪色后溶液两份,一份滴加 FeCl3 溶液; 另一份滴加 KSCN 溶液;

- II. 另取褪色后溶液,滴加盐酸和 BaCl₂ 溶液,产生白色沉淀。
- III. 向2 mL 0.1 mol•L-1 FeCl₃ 溶液中滴加 2 滴0.1 mol•L-1 KSCN 溶液,变红,通入O₂,无明显变化。
- ② 实验 III 的目的是____。
- ③ 综合实验I~III可得出结论:溶液褪色的原因是H2O2 将SCN 氧化为了_____(填化学式)
- (4) 乙直接用 FeCl₂·4H₂O 配制_mol•L⁻¹ 的 FeCl₂ 溶液,测其 pH,约为 3。

重复步骤二中的操作,发现溶液红色并未褪去。

查阅资料后推测,红色不褪去的原因可能是 pH 较大时 H_2O_2 不能氧化 SCN^- 。乙利用上述部分试剂,通过实验排除了这一可能。请补全表格内容。

步骤	试剂及操作	现象
i	取2 mL BaCl ₂ 溶液(pH 约为 7),滴加溶液和溶液	生成白色沉淀
ii	向i 所得溶液中滴加 0.1 mol•L ⁻¹ FeCl₃ 溶液	

参考答案

1	2	3	4	5	6	7	8	9	10
С	D	D	С	С	В	A	В	В	A
11	12	13	14	15	16	17	18	19	20
A	В	В	В	В	D	A	D	D	С
21	22	23	24	25					
В	В	С	D	С					

- 26. (13 分) (1) $2Na_2O_2 + 2H_2O = 4NaOH + O_2 \uparrow$ (2 分) N_A (1 分)
- $(2) Cl_2+H_2O = H^++Cl^-+HClO$
- (3) $HCO_3^- + OH^- = CO_3^2 + H_2O$ (2 分)
- (4) 3Fe+4H₂O(g) <u>高温</u> Fe₃O₄+4H₂ (2分)
- (5) $2Fe^{3^+} + I_2 = 2Fe^{2^+} + 2I^-(2 分)$
- (6) $4Fe^{2+}+O_2+4H^+$ = $4Fe^{3+}+H_2O$ (2 分)
- 27. (11 分)
- (1) $Cu + 2Fe^{3+} = 2Fe^{2+} + Cu^{2+}$
- (2) Fe 和 Cu, 盐酸
- (3) $2Fe^{2+}+Cl_2=2Fe^{3+}+2Cl^{-2}$
- (4) C
- (5) 产生白色沉淀,迅速变成灰绿色,一段时间后变成红褐色

 $4\text{Fe}(OH)_2 + O_2 + 2H_2O = 4\text{Fe}(OH)_3$

28 (13 分)

- (1) AB (2 分)
- (2) $4H^{+}+2Cl^{-}+MnO_{2}$ $Mn^{2+}+Cl_{2}\uparrow+2H_{2}O$ (2 分) 1:2 (1 分) 2.4 (1 分)
- (3) 吸收氯气, 防治污染空气 (1分)

 $Cl_2 + 2OH = Cl^- + ClO^- + H_2O (2 \%)$

- (4) $Co_2O_3 + 6H^{\dagger} + 2Cl^{\dagger} = = 2Co^{2^{\dagger}} + Cl_2\uparrow + 3H_2O$ (2 分)
- (5) $S_2O_3^2 + 4Cl_2 + 5H_2O = 2SO_4^2 + 8Cl_+ + 10H_+ (2 \text{ }\%)$

29. (13 分)

- (1) $Fe + 2Fe^{3^{+}} = 3Fe^{2^{+}}$ (2 分)
- (2) $2Fe^{2+} + H_2O_2 + 2H^+ = = 2Fe^{3+} + 2H_2O$ (2 分)
- (3) ① 无明显现象或不变红(1分); 变红(1分)
- ②排除 H_2O_2 分解产生的 O_2 氧化 O_2 氧化 O_3 O_4 (1 分)
- (4) 0.15 (1分)

2 滴 0.1 mol·L^{-1} KSCN_溶液和 5 滴 5% $\underline{\text{H}_2\text{O}_2}$ 溶液 (各 1 分) 无明显现象或不变红(1 分)