北师大实验中学 2023-2024 学年第一学期期中测验

高一数学

2023年11月

本试卷共 4 页, 共 150 分。考试时长 120 分钟。考生务必将答案答在答题卡上, 在试卷上作答 无效。考试结束后,将本试卷和答题卡一并交回。

一、选择题共 10 小题,每小题 4 分,共 40 分,在每小题列出的四个选项中,选出符合题目要求 的一项。

- 1. 已知集合 $A = \{x \mid x = 2k + 1, k \in \mathbb{Z}\}, B = \{x \mid -2 < x < 4\}, \mathbb{B} \land A \cap B = \{x \mid x = 2k + 1, k \in \mathbb{Z}\}$ (A) $\{-1,1\}$ (B) $\{1,3\}$ (C) $\{-1, 1, 3\}$ (D) $\{0, 2, 4\}$
- 2. 函数 $f(x) = \sqrt{1 x^2}$ 的定义域为 (A) (-1,1)(B) [-1,1](C) $(-\infty, -1) \cup (1, +\infty)$ (D) $(-\infty, -1] \cup [1, +\infty)$
- 3. 下列函数中, 在定义域内既是奇函数, 又是增函数的是
 - (C) $y = -\frac{1}{x}$ (D) $y = x^3$ (B) y = x + 1(A) $y = x^2$
- 4. 已知 x > 0, 则 $x + \frac{9}{x}$ 的最小值为 (A) -3(B) 3 (C) 6 (D) 10 5. 已知函数 $f(x) = \begin{cases} x^2 - 1, x \ge 1, \\ x - 2, x < 1. \end{cases}$ 若 f(a) = 3,则 a = $(A) \pm 2$ (B) 2 (C) -2(D) 5

6. 已知函数 f(x) 是定义在 [-6,6] 上的偶函数, 且在 [0,6] 上单调递增. 以下结论正确的是 (A) $f(-5) > f(\pi) > f(-2)$ (B) $f(\pi) > f(-2) > f(-5)$ (C) $f(\pi) > f(-5) > f(-2)$ (D) $f(-5) > f(-2) > f(\pi)$

7. 已知函数 y = f(x) 图象是连续不断的,并且是 **R** 上的增函数,有如下的对应值表

x	1	2	3	4	
y	-0.24	1.21	3.79	10.28	

以下说法中错误的是

- (A) f(0) < 0
- (B) 当 x > 2 时, f(x) > 0
- (C) 函数 f(x) 有且仅有一个零点 (D) 函数 g(x) = f(x) + x 可能无零点

- 8. 已知 f(x) 是定义在 **R** 上的函数,那么"存在实数 *M*,使得对任意 $x \in \mathbf{R}$ 总有 $f(x) \leq M$ " 是 "函数 f(x)存在最大值"的
 - (A) 充分不必要条件
- (B) 必要不充分条件
- (C) 充要条件 (D) 既不充分也不必要条件
- 数学里有一种证明方法为无字证明,是指仅用图形而无需文字解释就 能不证自明的数学命题.在同一平面内有形状、大小相同的图 1 和 图 2,其中四边形 ABCD 为矩形,△BCE 为等腰直角三角形,设 AB = √a, BC = √b(b ≥ a > 0),则借助这两个图形可以直接无字证 明的不等式是

(A) $\frac{a+b}{2} \ge \sqrt{ab}$ (B) $\frac{2ab}{a+b} \le \sqrt{ab}$ (C) $a^2 + b^2 \ge 2\sqrt{ab}$ (D) $\frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}}$

10. 将 5 个 1,5 个 2,5 个 3,5 个 4,5 个 5 共 25 个数填入一个 5 行 5 列的表格内 (每格填入 1 个数), 使得同一行中任何两数之差的绝对值不超过 2,设第 k 行的所有数的和为 r_k(k = 1,2,3,4,5), m 为 r₁,r₂,r₃,r₄,r₅ 中的最小值,则 m 的最大值为

- (A) 8
 (B) 9
 (C) 10
 (D) 11

 第二部分 (非选择题,共110分)
- 二、填空题共 5 小题,每小题 5 分,共 25 分。
- 11. 已知命题 $p: \exists x \in \mathbf{R}, x^2 x + 1 < 0, 则 \neg p$: ______.
- 12. 已知 a, b, c 为实数,能说明"若 a > b > c,则 $a^2 > bc$ "为假命题的一组 a, b, c 的值是 _____.
- 13. 函数 $f(x) = \frac{x+1}{x-1}$ 的图象的对称中心是 _____, 不等式 $f(x) \ge -1$ 的解集是 _____.
- 14. 已知函数 $f(x) = \begin{cases} x^2 + 4x + 3, x \in (-\infty, 0], \\ |\frac{1}{x} 1|, x \in (0, +\infty). \end{cases}$ 若关于 x 的方程 f(x) = t 有 4 个不同的实数 根 $x_1, x_2, x_3, x_4(x_1 < x_2 < x_3 < x_4),$ 则 t 的取值范围是 _____, 若 $x_1 + x_2 + x_3 x_4 = 0,$ 则 $t = _____$.
- 15. 已知函数 f(x) 的定义域为 [0,1], 且满足下列条件:
 (1) 对任意的 x ∈ [0,1], 总有 f(x) ≥ 3, 且 f(1) = 4;
 (2) 若 x₁ ≥ 0, x₂ ≥ 0, x₁ + x₂ ≤ 1, 则有 f (x₁ + x₂) ≥ f (x₁) + f (x₂) 3.
 给出下列四个结论:
 - (1) $f\left(\frac{1}{2}\right) \leqslant \frac{7}{2};$
 - ② f(0) 可能为区间 [3,4] 中的任意值;
 - ③ 函数 *f*(*x*) 的最大值是 4;
 - ④ 当 $x \in \left(\frac{1}{3^2}, \frac{1}{3}\right]$ 时, f(x) < 3x + 3. 其中所有正确结论的序号是 _____.

三、解答题共 6 小题, 共 85 分。解答题应写出文字说明, 验算步骤或证明过程。

16. (15分)

已知 $f(x) \neq \mathbf{R}$ 上的奇函数, 当 x > 0 时, $f(x) = x^2 - 3x + 2$. 现已作出函数 f(x) 在 y 轴右侧的图象, 如图所示.

- (I) 请根据条件,将函数 f(x) 的图象补充完整,并直接写出函数
 f(x) 的表达式;
- (II) 写出函数 f(x) 的单调区间,并利用单调性的定义证明函数
 f(x) 在 (0,1) 上单调递减;
- (III) 直接写出不等式 (x-1)f(x) > 0 的解集.

17. (15分)

已知集合
$$A = \{x | |x-1| < 2\}, B = \{x | x^2 - 6ax + 5a^2 < 0\}.$$

- (II) 请在条件①、条件②、条件③这三个条件中选择一个作为已知,使得至少存在一个实数 a 满足 该条件,并求出 a 的范围.
 ① A ∩ B = B; ② A ∪ B = B; ③ C_RA ⊆ C_RB.
 注:如果选择多个符合要求的条件分别解答,按第一个解答计分.

18. (14分)

已知关于
$$x, y$$
 的方程组
$$\begin{cases} 2x^2 + y^2 = 2, \\ y = kx + 1, \end{cases}$$
 其中 $k \in \mathbf{R}$.

- (I) $\exists k = 1$ 时, 求该方程组的解;
- (II) 证明:无论 k 为何值,该方程组总有两组不同的解;
- (III) 记该方程组的两组不同的解分别为 $\begin{cases} x = x_1, \\ y = y_1 \end{cases}$ 和 $\begin{cases} x = x_2, \\ y = y_2, \end{cases}$ 判断 $3(y_1 + y_2) 2y_1y_2$ 是否 为定值. 若为定值,请求出该值;若不是定值,请说明理由.

19. (13分)

某厂家为开拓市场, 拟对广告宣传方面的投入进行调整. 经调查测算, 产品的年订购量 t(万件)与广告费用 x(万元)之间的关系为 $t = 25 - \frac{k}{x+2}$. 已知当广告费用投入为 6 万元时, 产品订购量为 19 万件. 该厂家每生产 1 万件该产品, 需投入 12 万元. 另外, 厂家每年还需投入 30 万元用于生产线的维护. 规定年总成本为生产投入费用、维护投入费用、广告费用的总和.

(I) 求 k 的值;

- (II) 试求该厂家的年总成本 y(万元) 与广告费用 x(万元) 之间的函数关系式;
- (III) 假定年生产成本为生产投入费用、维护投入费用的和.若每件产品的售价定为产品的年平均生产成本的2倍,当广告费用为多少万元时,厂家的年利润最高?

20. (14分)

已知函数 f(x) = x|x-a| + 2x, $a \ge 0$.

- (I) 证明: 当 a = 0 时, f(x) 是奇函数;
- (II) 若函数 f(x) 在 $(0, +\infty)$ 上单调递增,求 a 的取值范围;
- (III) 若对任意 $x \in [1, 2]$, 关于 x 的不等式 f(x) < 2x + 1 恒成立, 求 a 的取值范围.

21. (14分)

对任意非空数集 A, 定义 $\Omega(A) = \{\pi(X) \mid X \subseteq A \boxminus X \neq \phi\}$, 其中 $\pi(X)$ 表示非空数集 X 中所 有元素的积. 特别地, 如果 $X = \{x\}$, 规定 $\pi(X) = x$.

- (II) 若 $A = \{a_1, a_2, a_3, a_4, a_5\}$, 其中 a_i 是正整数 (i = 1, 2, 3, 4, 5), 求集合 $\Omega(A)$ 中元素个数的最大值和最小值, 并说明理由;
- (III) 若 $A = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7\}$, 其中 a_i 是正实数 (i = 1, 2, 3, 4, 5, 6, 7), 求集合 $\Omega(A)$ 中元素 个数的最小值, 并说明理由.

答案

一、选择题共 10 小题,每小题 4 分,共 40 分,在每小题列出的四个选项中,选出符合题目要求的 一项。

	题号	1	2	3	4	5	6	7	8	9	10
ſ	答案	С	В	D	С	В	Α	D	В	Α	С

二、填空题共5小题,每小题5分,共25分。

11. $\forall x \in \mathbf{R}, x^2 - x + 1 \ge 0.$

- 12. 答案不唯一, 如 a = 1, b = -1, c = -2.
- 13. $(1,1), (-\infty,0] \cup (1,+\infty).$
- 14. $(0,1), \frac{\sqrt{3}}{2}.$
- 15. (1)(3)(4).

13,14 题第一个空 3 分, 第二个空 2 分, 15 题的采分点为 0,2,3,5 分, 有错误不给分.

三、解答题共 6 小题, 共 85 分。解答题应写出文字说明, 验算步骤或证明过程。

 $f(x) = \begin{cases} x^2 - 3x + 2, x > 0, \\ 0, x = 0, \\ -x^2 - 3x - 2, x < 0. \end{cases}$ (II) 单调增区间是 $\left(-\infty, -\frac{3}{2}\right), \left(\frac{3}{2}, +\infty\right),$ 证: $\forall x_1, x_2 \in (0, 1)$, 不妨设 $x_1 < x_2$, $f(x_1)-f(x_2)=x_1^2-3x_1+2-\left(x_2^2-3x_2+2\right)=(x_1-x_2)(x_1+x_2)(x_2+x_2)(x_1+x_2)(x_1+x_2)(x_1+x_2)(x_2+x_2)(x_1+x_2)(x_1+x_2)(x_2+x_2)(x_1+x_2)(x_2+x_2)(x_1+x_2)(x_2+x_2)(x$ $x_2 - 3$, 因为 $x_1 + x_2 - 3 < 0$, $x_1 - x_2 < 0$, 所以, $f(x_1) - f(x_2) > 0$, 即 $f(x_1) > f(x_2)$, $解集为 (-\infty, -2) \cup (-1, 0) \cup (2, +\infty). \dots 3 \frac{3}{2}$ 17. \mathfrak{M} : (I) $A = (-1, 3), \dots, 2$

$\begin{split} & \text{Fill}, \ 5a \leqslant 3, \ \Pi a \leqslant \frac{3}{5}, \ \text{Fill}, \ 0 < a \leqslant \frac{3}{5}, \\ & \text{Fill}, \ 5a \geqslant -1, \ \Pi a \geqslant -\frac{1}{5}, \ \text{Fill}, \ -\frac{1}{5} \leqslant a < 0 & \dots & 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2$	当 $a > 0$ 时, $B = (a, 5a)$,
$\begin{split} & \exists a < 0 \text{ BJ}, \ B = (5a, a), \\ & \text{ ff} \text{ KJ}, \ 5a \geq -1, \ \text{ IP} \ a \geq -\frac{1}{5}, \ \text{ ff} \text{ KJ}, \ -\frac{1}{5} \leqslant a < 0 & \dots & 2 \text{ ff} \\ & $$$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	所以, $5a \leq 3$, 即 $a \leq \frac{3}{5}$, 所以, $0 < a \leq \frac{3}{5}$
$ \begin{array}{l} \label{eq:result} & \text{fill}, \ 5a \geq -1, \ W \ a \geq -\frac{1}{5}, \ \text{fill}, \ -\frac{1}{5} \leqslant a < 0 & \cdots & 2 \ \text{fill} \\ & \text{$\&$} \& \text{$\&$} \& \text{hW$} \& a \ \text{$bw} w \ \text{$@a$} \& \text{a} & \text{bw$} \& \text{$a$} & \text{$bw} & \text{a} & \text{bw$} & \text{$a$} & \text{$bw} & \text{a} & \text{a} & \text{a} & \text{a} & \text{a} & \text{bw$} & \text{$a$} & \text{$a$}$	当 $a < 0$ 时, $B = (5a, a)$,
$\begin{split} & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	所以, $5a \ge -1$, 即 $a \ge -\frac{1}{5}$, 所以, $-\frac{1}{5} \le a < 0$ · · · · · · · · · · · · · · · · · ·
18. 解: (1) ${=} k = 1$ 时, ${=}{=} h = 1$, ${=} h = 1$, ${=} h = 1$, ${=} 1$, ${=} h = 1$, ${=} 1$, ${=} 1$, ${=} 1$, ${=} 1$, ${=} 1$, ${=} 1$, ${=} 1$, ${=} 1$, ${=} 1$, ${=} 1$, ${=} 1$, ${=} 1$, ${=} 2$, ${$	综上所述, <i>a</i> 的取值范围是 $\left[-\frac{1}{5}, \frac{3}{5}\right]$ 1分
解得 x ₁ = -1, x ₂ = ¹ / ₃ . 因此、方程組的解为 { x = -1, x ₂ = ¹ / ₃ . (II) 消去 y, 得 (k ² + 2)x ² + 2kx - 1 = 0,	18. 解: (I) 当 $k = 1$ 时, 消去 y , 得 $3x^2 + 2x - 1 = 0$,
$\begin{array}{l} \text{But. } 5 \texttt{Pagatom} \$ \$ \begin{cases} x = -1, \\ y = 0 \end{cases} \qquad \texttt{A} \begin{cases} x = \frac{1}{3}, \\ y = \frac{3}{4}, \\ (\texttt{II}) \ \texttt{H} \ddagger y, \ \texttt{H} \ (k^2 + 2)x^2 + 2kx - 1 = 0, \\ 1 \end{cases} \qquad \texttt{A} = 8k^2 + 8 > 0, \\ (\texttt{II}) \ \texttt{H} \ddagger y, \ \texttt{H} \ (k^2 + 2)x^2 + 2kx - 1 = 0, \\ 2 \end{cases} \qquad \texttt{A} \\ \texttt{But. } \ \texttt{k} \ \texttt{b} \ \texttt{A} = 8k^2 + 8 > 0, \\ 2 \end{cases} \qquad \texttt{A} \\ \texttt{But. } \ \texttt{k} \ \texttt{b} \ \texttt{A} = \texttt{A} > 0, \\ \texttt{A} = 8k^2 + 8 > 0, \\ \texttt{A} = 8k^2 + 8k^2 + 2 = 4k, \\ \texttt{A} = 8k^2 + 2 = 4k, \\ \texttt{A} = 8k^2 + 2 = 4k, \\ \texttt{A} = 8k^2 + 2 = 3k^2 + 2 = 2k^2 + 2 = 3k^2 + 2 = 3k^2 + 2 = 3k^2 + 2 = 2k^2 + 2 = 3k^2 + 2 = 3k^2 + 2 = 3k^2 + 2 = 3k^2 + 2 = 2k^2 + 2 = 3k^2 $	解得 $x_1 = -1, x_2 = \frac{1}{3}$,
(II) iii iii iii iii iii iii iii iii iii i	因此, 方程组的解为 $\begin{cases} x = -1, \\ y = 0 \end{cases}$ 和 $\begin{cases} x = \frac{1}{3}, \\ y = \frac{4}{3}. \end{cases}$
$\begin{split} &\Delta = 8k^2 + 8 > 0, \qquad $	(II) 消去 y , 得 $(k^2+2)x^2+2kx-1=0$,
因此, 该方程有两个不同的解, 该方程组也对应有两组不同的解	$\Delta = 8k^2 + 8 > 0, \qquad \cdots \qquad 2 $
(II) 由韦达定理得 $x_1 + x_2 = -\frac{2k}{k^2 + 2}, x_1 x_2 = -\frac{1}{k^2 + 2}, \dots 2$ 分 $y_1 + y_2 = k(x_1 + x_2) + 2 = \frac{4}{k^2 + 2}, \dots 1$ 分 $y_1 y_2 = k^2 x_1 x_2 + k(x_1 + x_2) + 1 = \frac{-2k^2 + 2}{k^2 + 2}, \dots 1$ 分 所以, $3(y_1 + y_2) - 2y_1 y_2 = \frac{12}{k^2 + 2} - \frac{-4k^2 + 4}{k^2 + 2} = 4, \dots 1$ 分 因此, 是定值, 且定值为 $4, \dots 1$ 分 19. 解:(1) 当 $x = 6$ 时, $t = 25 - \frac{k}{6+2} = 19$, 解得 $k = 48, \dots 2$ 分 (II) $y = 30 + x + 12(25 - \frac{48}{x+2}), x \ge 0, \dots 3$ 分 (III) 设年利润为 W 万元, 则 $W = \frac{y - x}{t} \cdot 2t - y = y - 2x = 30 - x + 300 - \frac{576}{x+2} = 332 - (x + 2 + \frac{576}{x+2}), \dots 6$ 分 当且仅当 $x + 2 = 24, x = 22$ 时, W 取最大值 284	因此,该方程有两个不同的解,该方程组也对应有两组不同的解1分
$y_{1} + y_{2} = k(x_{1} + x_{2}) + 2 = \frac{4}{k^{2} + 2}, \dots \dots$	(II) 由韦达定理得 $x_1 + x_2 = -\frac{2k}{k^2 + 2}, x_1 x_2 = -\frac{1}{k^2 + 2}, \dots 2 \frac{2}{k^2}$
$y_1y_2 = k^2 x_1 x_2 + k(x_1 + x_2) + 1 = \frac{-2k^2 + 2}{k^2 + 2}, \dots \dots 1 $ $free Prices Price$	$y_1 + y_2 = k(x_1 + x_2) + 2 = \frac{4}{k^2 + 2}, \dots \dots$
所以、 $3(y_1 + y_2) - 2y_1y_2 = \frac{12}{k^2 + 2} - \frac{-4k^2 + 4}{k^2 + 2} = 4, \dots 1 $ 因此、是定值、且定值为 4	$y_1y_2 = k^2x_1x_2 + k(x_1 + x_2) + 1 = \frac{-2k^2 + 2}{k^2 + 2}, \dots \dots$
因此,是定值,且定值为 4	所以, $3(y_1 + y_2) - 2y_1y_2 = \frac{12}{k^2 + 2} - \frac{-4k^2 + 4}{k^2 + 2} = 4, \dots, 1$ 分
19. 解:(I) 当 $x = 6$ 时, $t = 25 - \frac{k}{6+2} = 19$, 解得 $k = 48$,	因此,是定值,且定值为 41 分
(II) $y = 30 + x + 12(25 - \frac{48}{x+2}), x \ge 0.$ (III) 设年利润为 W 万元, 则 $W = \frac{y-x}{t} \cdot 2t - y = y - 2x = 30 - x + 300 - \frac{576}{x+2} = 332 - (x+2+\frac{576}{x+2}), \dots 6 分$ 当且仅当 $x + 2 = 24, x = 22$ 时, W 取最大值 284 2 分 20. 解: (I) 当 $a = 0$ 时, $f(x) = x x + 2x,$ f(-x) = -x -x - 2x = -f(x), 因此, $f(x) \neq \mathbf{R}$ 上的奇函数 3 分 (II) $f(x) = \begin{cases} x^2 + (2-a)x, x \ge a, \\ -x^2 + (2+a)x, x < a. \end{cases}$ … 2 分	19. 解:(I) 当 $x = 6$ 时, $t = 25 - \frac{k}{6+2} = 19$, 解得 $k = 48, \dots 2$ 分
(III) 设年利润为 W 万元, 则 $W = \frac{y-x}{t} \cdot 2t - y = y - 2x = 30 - x + 300 - \frac{576}{x+2} = 332 - (x+2+\frac{576}{x+2}), \dots 6$ 分 当且仅当 $x + 2 = 24, x = 22$ 时, W 取最大值 284	$(II)y = 30 + x + 12(25 - \frac{48}{x+2}), x \ge 0. \dots 3 \text{ from } 3 $
則 $W = \frac{y-x}{t} \cdot 2t - y = y - 2x = 30 - x + 300 - \frac{576}{x+2} = 332 - (x+2+\frac{576}{x+2}), \dots 6$ 分 当且仅当 $x+2 = 24, x = 22$ 时, W 取最大值 284	(III) 设年利润为 W 万元,
当且仅当 $x + 2 = 24$, $x = 22$ 时, W 取最大值 284	则 $W = \frac{y-x}{t} \cdot 2t - y = y - 2x = 30 - x + 300 - \frac{576}{x+2} = 332 - (x+2+\frac{576}{x+2}), \dots, 6$ 分
20. 解: (I) 当 $a = 0$ 时, $f(x) = x x + 2x$, f(-x) = -x -x - 2x = -f(x), 因此, $f(x) \in \mathbb{R}$ 上的奇函数	当且仅当 $x + 2 = 24$, $x = 22$ 时, W 取最大值 284
$f(-x) = -x -x - 2x = -f(x),$ 因此, $f(x) \in \mathbb{R}$ 上的奇函数	20. 解: (I) $\leq a = 0$ 时, $f(x) = x x + 2x$,
(II) $f(x) = \begin{cases} x^2 + (2-a)x, x \ge a, \\ -x^2 + (2+a)x, x < a. \end{cases}$	f(-x) = -x -x -2x = -f(x), 因此, $f(x)$ 是 R 上的奇函数
	(II) $f(x) = \begin{cases} x^2 + (2-a)x, x \ge a, \\ -x^2 + (2+a)x, x < a. \end{cases}$
当 $x \ge a$ 时, $\frac{a-2}{2} \le a$, 解得 $a \ge -2$;	当 $x \ge a$ 时, $\frac{a-2}{2} \le a$, 解得 $a \ge -2$;

数学试题第6页(共8页)

	当 $x < a$ 时, $\frac{a+2}{2} \ge a$, 解得 $a \le 2$;
	所以, <i>a</i> 的取值范围是 [0,2]. (III) 因为 $f(x) < 2x + 1$ 在 $x \in [1,2]$ 恒成立, 即 $x x-a < 1, x \in [1,2]$,
	所以, $x - \frac{1}{x} < a < x + \frac{1}{x}$ 恒成立,
	考虑 $x - \frac{1}{x} \in [0, \frac{3}{2}], x + \frac{1}{x} \in [2, \frac{10}{3}], \dots 2$ 分
	所以, <i>a</i> 的取值范围是 $(\frac{3}{2}, 2)$ 1分
21.	解: (I) $\Omega(A_1)$ 中有 4 个元素, $\Omega(A_2)$ 中有 7 个元素
	(II) $\Omega(A)$ 中元素个数的最大值是 31,最小值是 112 分
	集合 A 的非空子集有 2 ⁵ - 1 = 31 个,因此, Ω(A) 中最多有 31 个元素. 集合 A = {2,3,5,7,11}, A 中任意两个不同子集元素的乘积不同, 此时, Ω(A) 中有 31 个元素1分
	不妨设 $1 \leq a_1 < a_2 < a_3 < a_4 < a_5$,
	则 $a_1 < a_2 < a_3 < a_4 < a_5 < a_2 \cdot a_5 < a_3 \cdot a_5 < a_4 \cdot a_5 < a_2 \cdot a_4 \cdot a_5 < a_3 \cdot a_4 \cdot a_5 < a_2 \cdot a_3 \cdot a_4 \cdot a_5$, 所以, $\Omega(A)$ 中至少 11 个元素.
	$A = \{1, 2, 4, 8, 16\}, \Omega(A_1) = \{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024\},$ 此时, $\Omega(A)$ 中有 11 个元素2 分
	(III) $\Omega(A)$ 中最少有 13 个元素1 分
	如 $A = \left\{\frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8\right\}$, $\Omega(A) = \left\{\frac{1}{64}, \frac{1}{32}, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, 16, 32, 64\right\}$, 此时, $\Omega(A)$ 中有 13 个元素1分
	证明如下:记 A 表示集合 A 中的元素个数, 对集合 A 按照如下分类:
	$\begin{split} A_1 &= \{ a \mid a \in A, a < 1 \}, \\ A_2 &= \{ a \mid a \in A, a = 1 \}, \\ A_3 &= \{ a \mid a \in A, a > 1 \}, \end{split}$
	$\partial_{U} 4 - r 4 - u 4 - z $ 回 $r + u + z - 7 u < 1 r + z > 6$ $\partial_{U} B - O(A)$ 再対集合

设 $|A_1| = x, |A_2| = y, |A_3| = z, 则 x + y + z = 7, y \leq 1, x + z \geq 6$. 设 $B = \Omega(A)$, 再对集合 B 按照如下分类:

E	$B_1 = \{ b \mid b \in B, b < 1 \},$
E	$B_2 = \{ b \mid b \in B, b = 1 \},$
E	$B_3=\{b\mid b\in BA,b>1\},$

设 $|B_1| = p, |B_2| = q, |B_3| = r,$ 设 $A_1 = \{a_1, a_2, \cdots, a_x\}, 其中, a_1 < a_2 < \cdots < a_x < 1, 则$

 $a_1a_2 \cdots a_x < a_1a_2a_3 < \cdots < a_1a_2a_x < a_1a_2 < a_1a_3 < a_1a_x < a_1 < a_2 < \cdots < a_x < 1,$

the p ≥ x + (x - 1) + (x - 2) + ... + 1 = $\frac{1}{2}x(x + 1)$, 1

同理可证, $r \ge z + (z - 1) + (z - 2) + \dots + 1 = \frac{1}{2}z(z + 1),$ 而 $q \ge y$, 因此,

$$\begin{split} p+q+r &\ge \frac{1}{2}x(x+1) + \frac{1}{2}z(z+1) + y = \frac{1}{2}\left(x^2 + x + z^2 + z + 2y\right) \\ &= \frac{1}{2}\left(x^2 - x + z^2 - z + 14\right) = \frac{1}{2}\left[(x+z)^2 - (x+z) - 2xz\right] + 7, \\ &\ge \frac{1}{2}\left[(x+z)^2 - (x+z) - \frac{(x+z)^2}{2}\right] + 7 = \frac{1}{4}\left[(x+z)^2 - 2(x+z)\right] + 7, \end{split}$$

------1分