北师大实验中学 2023－2024 学年第一学期期中测验
 高 一 数 学

2023年11月
本试卷共 4 页，共 150 分。考试时长 120 分钟。考生务必将答案答在答题卡上，在试卷上作答无效。考试结束后，将本试卷和答题卡一并交回。

第一部分（选择题，共 40 分）

一，选择题共 10 小题，每小题 4 分，共 40 分，在每小题列出的四个选项中，选出符合题目要求的一项。

1．已知集合 $A=\{x \mid x=2 k+1, k \in \mathbf{Z}\}, B=\{x \mid-2<x<4\}$ ，那么 $A \cap B=$
（A）$\{-1,1\}$
（B）$\{1,3\}$
（C）$\{-1,1,3\}$
（D）$\{0,2,4\}$

2．函数 $f(x)=\sqrt{1-x^{2}}$ 的定义域为
（A）$(-1,1)$
（B）$[-1,1]$
（C）$(-\infty,-1) \cup(1,+\infty)$
（D）$(-\infty,-1] \cup[1,+\infty)$

3．下列函数中，在定义域内既是奇函数，又是增函数的是
（A）$y=x^{2}$
（B）$y=x+1$
（C）$y=-\frac{1}{x}$
（D）$y=x^{3}$

4．已知 $x>0$ ，则 $x+\frac{9}{x}$ 的最小值为
（A）-3
（B） 3
（C） 6
（D） 10

5．已知函数 $f(x)=\left\{\begin{array}{l}x^{2}-1, x \geqslant 1, \\ x-2, x<1 .\end{array}\right.$ 若 $f(a)=3$ ，则 $a=$
（A）± 2
（B） 2
（C）-2
（D） 5

6．已知函数 $f(x)$ 是定义在 $[-6,6]$ 上的偶函数，且在 $[0,6]$ 上单调递增．以下结论正确的是
（A）$f(-5)>f(\pi)>f(-2)$
（B）$f(\pi)>f(-2)>f(-5)$
（C）$f(\pi)>f(-5)>f(-2)$
（D）$f(-5)>f(-2)>f(\pi)$

7．已知函数 $y=f(x)$ 图象是连续不断的，并且是 \mathbf{R} 上的增函数，有如下的对应值表

x	1	2	3	4
y	-0.24	1.21	3.79	10.28

以下说法中错误的是
（A）$f(0)<0$
（B）当 $x>2$ 时，$f(x)>0$
（C）函数 $f(x)$ 有且仅有一个零点
（D）函数 $g(x)=f(x)+x$ 可能无零点

8．已知 $f(x)$ 是定义在 \mathbf{R} 上的函数，那么＂存在实数 M ，使得对任意 $x \in \mathbf{R}$ 总有 $f(x) \leqslant M$＂是 ＂函数 $f(x)$ 存在最大值＂的
（A）充分不必要条件
（B）必要不充分条件
（C）充要条件
（D）既不充分也不必要条件

9．数学里有一种证明方法为无字证明，是指仅用图形而无需文字解释就能不证自明的数学命题。在同一平面内有形状，大小相同的图1和图 2 ，其中四边形 $A B C D$ 为矩形，$\triangle B C E$ 为等腰直角三角形，设 $A B=\sqrt{a}, B C=\sqrt{b}(b \geqslant a>0)$ ，则借助这两个图形可以直接无字证明的不等式是

（A）$\frac{a+b}{2} \geqslant \sqrt{a b}$
（B）$\frac{2 a b}{a+b} \leqslant \sqrt{a b}$
（C）$a^{2}+b^{2} \geqslant 2 \sqrt{a b}$
（D）$\frac{a+b}{2} \leqslant \sqrt{\frac{a^{2}+b^{2}}{2}}$

10．将 5 个 1,5 个 2,5 个 3,5 个 4,5 个 5 共 25 个数填入一个 5 行 5 列的表格内（每格填入 1 个数），使得同一行中任何两数之差的绝对值不超过 2 ，设第 k 行的所有数的和为 $r_{k}(k=1,2,3,4,5)$ ， m 为 $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$ 中的最小值，则 m 的最大值为
（A） 8
（B） 9
（C） 10
（D） 11

第——部分（非选择题，共110分）

二，填空题共 5 小题，每小题 5 分，共 25 分。

11．已知命题 $p: \exists x \in \mathbf{R}, x^{2}-x+1<0$ ，则 $\neg p$ ： \qquad ．

12．已知 a, b, c 为实数，能说明＂若 $a>b>c$ ，则 $a^{2}>b c$＂为假命题的一组 a, b, c 的值是 \qquad ．

13．函数 $f(x)=\frac{x+1}{x-1}$ 的图象的对称中心是 \qquad ，不等式 $f(x) \geqslant-1$ 的解集是 \qquad $-$

14．已知函数 $f(x)=\left\{\begin{array}{l}x^{2}+4 x+3, x \in(-\infty, 0], \\ \left|\frac{1}{x}-1\right|, x \in(0,+\infty) .\end{array}\right.$ 若关于 x 的方程 $f(x)=t$ 有 4 个不同的实数根 $x_{1}, x_{2}, x_{3}, x_{4}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)$ ，则 t 的取值范围是 \qquad ，若 $x_{1}+x_{2}+x_{3} x_{4}=0$ ，则 $t=$ \qquad ．

15．已知函数 $f(x)$ 的定义域为 $[0,1]$ ，且满足下列条件：
（1）对任意的 $x \in[0,1]$ ，总有 $f(x) \geqslant 3$ ，且 $f(1)=4$ ；
（2）若 $x_{1} \geqslant 0, x_{2} \geqslant 0, x_{1}+x_{2} \leqslant 1$ ，则有 $f\left(x_{1}+x_{2}\right) \geqslant f\left(x_{1}\right)+f\left(x_{2}\right)-3$ 。
给出下列四个结论：
（1）$f\left(\frac{1}{2}\right) \leqslant \frac{7}{2}$ ；
（2）$f(0)$ 可能为区间 $[3,4]$ 中的任意值；
（3）函数 $f(x)$ 的最大值是 4 ；
（4）当 $x \in\left(\frac{1}{3^{2}}, \frac{1}{3}\right]$ 时，$f(x)<3 x+3$ ．
其中所有正确结论的序号是 \qquad ．

三，解答题共 6 小题，共 85 分。解答题应写出文字说明，验算步骤或证明过程。

16．（15 分）
已知 $f(x)$ 是 \mathbf{R} 上的奇函数，当 $x>0$ 时，$f(x)=x^{2}-3 x+2$ ．现已作出函数 $f(x)$ 在 y 轴右侧的图象，如图所示。
（I）请根据条件，将函数 $f(x)$ 的图象补充完整，并直接写出函数 $f(x)$ 的表达式；
（II）写出函数 $f(x)$ 的单调区间，并利用单调性的定义证明函数 $f(x)$ 在 $(0,1)$ 上单调递减；
（III）直接写出不等式 $(x-1) f(x)>0$ 的解集．

17．（15 分）
已知集合 $A=\{x| | x-1 \mid<2\}, B=\left\{x \mid x^{2}-6 a x+5 a^{2}<0\right\}$ ．
（I）若 $a=1$ ，求 $A \cup B$ ；
（II）请在条件（1），条件（2），条件（3）这三个条件中选择一个作为已知，使得至少存在一个实数 a 满足该条件，并求出 a 的范围。
（1）$A \cap B=B$ ；
（2）$A \cup B=B$ ；
（3） $\mathrm{C}_{\mathbf{R}} A \subseteq \mathrm{C}_{\mathbf{R}} B$ ．

注：如果选择多个符合要求的条件分别解答，按第一个解答计分．

18．（14 分）
已知关于 x, y 的方程组 $\left\{\begin{array}{c}2 x^{2}+y^{2}=2, \\ y=k x+1,\end{array}\right.$ 其中 $k \in \mathbf{R}$ ．
（I）当 $k=1$ 时，求该方程组的解；
（II）证明：无论 k 为何值，该方程组总有两组不同的解；
（III）记该方程组的两组不同的解分别为 $\left\{\begin{array}{l}x=x_{1}, \\ y=y_{1}\end{array}\right.$ 和 $\left\{\begin{array}{l}x=x_{2}, \\ y=y_{2},\end{array}\right.$ 判断 $3\left(y_{1}+y_{2}\right)-2 y_{1} y_{2}$ 是否为定值．若为定值，请求出该值；若不是定值，请说明理由．

19．（13 分）

某厂家为开拓市场，拟对广告宣传方面的投入进行调整。经调查测算，产品的年订购量 t（万件）与广告费用 x（万元）之间的关系为 $t=25-\frac{k}{x+2}$ 。已知当广告费用投入为 6 万元时，产品订购量为 19 万件。该厂家每生产 1 万件该产品，需投入 12 万元。另外，厂家每年还需投入 30 万元用于生产线的维护。规定年总成本为生产投入费用，维护投入费用，广告费用的总和。
（I）求 k 的值；
（II）试求该厂家的年总成本 y（万元）与广告费用 x（万元）之间的函数关系式；
（III）假定年生产成本为生产投入费用，维护投入费用的和。若每件产品的售价定为产品的年平均生产成本的 2 倍，当广告费用为多少万元时，厂家的年利润最高？

20．（14 分）
已知函数 $f(x)=x|x-a|+2 x, a \geqslant 0$ ．
（I）证明：当 $a=0$ 时，$f(x)$ 是奇函数；
（II）若函数 $f(x)$ 在 $(0,+\infty)$ 上单调递增，求 a 的取值范围；
（III）若对任意 $x \in[1,2]$ ，关于 x 的不等式 $f(x)<2 x+1$ 恒成立，求 a 的取值范围．

21．（14 分）
对任意非空数集 A ，定义 $\Omega(A)=\{\pi(X) \mid X \subseteq A$ 且 $X \neq \phi\}$ ，其中 $\pi(X)$ 表示非空数集 X 中所有元素的积．特别地，如果 $X=\{x\}$ ，规定 $\pi(X)=x$ 。
（I）若 $A_{1}=\left\{\frac{1}{2}, 1,4\right\}, A_{2}=\{2,3,5\}$ ，请直接写出集合 $\Omega\left(A_{1}\right)$ 和 $\Omega\left(A_{2}\right)$ 中元素的个数；
（II）若 $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ ，其中 a_{i} 是正整数（ $\left.i=1,2,3,4,5\right)$ ，求集合 $\Omega(A)$ 中元素个数的最大值和最小值，并说明理由；
（III）若 $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right\}$ ，其中 a_{i} 是正实数 $(i=1,2,3,4,5,6,7)$ ，求集合 $\Omega(A)$ 中元素个数的最小值，并说明理由．

答案

一，选择题共 10 小题，每小题 4 分，共 40 分，在每小题列出的四个选项中，选出符合题目要求的一项。

题号	1	2	3	4	5	6	7	8	9	10
答案	C	B	D	C	B	A	D	B	A	C

二，填空题共 5 小题，每小题 5 分，共 25 分。
11．$\forall x \in \mathbf{R}, x^{2}-x+1 \geqslant 0$ ．
12．答案不唯一，如 $a=1, b=-1, c=-2$ ．
13．$(1,1),(-\infty, 0] \cup(1,+\infty)$ ．
14．$(0,1), \frac{\sqrt{3}}{2}$ ．
15．（1）（3）（4）．
13,14 题第一个空 3 分，第二个空 2 分， 15 题的采分点为 $0,2,3,5$ 分，有错误不给分．
三，解答题共 6 小题，共 85 分。解答题应写出文字说明，验算步骤或证明过程。
16．解：（I）图象如图，
2 分
$f(x)=\left\{\begin{array}{l}x^{2}-3 x+2, x>0, \\ 0, x=0, \\ -x^{2}-3 x-2, x<0 .\end{array}\right.$
（II）单调增区间是 $\left(-\infty,-\frac{3}{2}\right),\left(\frac{3}{2},+\infty\right)$ ，
单调减区间是 $\left(-\frac{3}{2}, 0\right),\left(0, \frac{3}{2}\right)$ ，
证：$\forall x_{1}, x_{2} \in(0,1)$ ，不妨设 $x_{1}<x_{2}$ ，
$f\left(x_{1}\right)-f\left(x_{2}\right)=x_{1}^{2}-3 x_{1}+2-\left(x_{2}^{2}-3 x_{2}+2\right)=\left(x_{1}-x_{2}\right)\left(x_{1}+\right.$ $\left.x_{2}-3\right)$ ，
因为 $x_{1}+x_{2}-3<0, x_{1}-x_{2}<0$ ，

所以，$f\left(x_{1}\right)-f\left(x_{2}\right)>0$ ，即 $f\left(x_{1}\right)>f\left(x_{2}\right)$ ，
因此，$f(x)$ 在 $(0,1)$ 上单调递减．
解集为 $(-\infty,-2) \cup(-1,0) \cup(2,+\infty)$ ．

当 $a=1$ 时，$B=(1,5), \ldots \ldots$
因此，$A \cup B=(-1,5)$ ．
（II）选择条件（1）或（3），
由条件可得 $B \subseteq A$ ，
当 $a=0$ 时，$B=\emptyset$ ，满足题意；

当 $a>0$ 时，$B=(a, 5 a)$ ，
所以， $5 a \leqslant 3$ ，即 $a \leqslant \frac{3}{5}$ ，所以， $0<a \leqslant \frac{3}{5}$ ．
当 $a<0$ 时，$B=(5 a, a)$ ，
所以， $5 a \geqslant-1$ ，即 $a \geqslant-\frac{1}{5}$ ，所以，$-\frac{1}{5} \leqslant a<0$ ．
综上所述，a 的取值范围是 $\left[-\frac{1}{5}, \frac{3}{5}\right]$ ．
18．解：（I）当 $k=1$ 时，消去 y ，得 $3 x^{2}+2 x-1=0$ ，
解得 $x_{1}=-1, x_{2}=\frac{1}{3}$ ，
因此，方程组的解为 $\left\{\begin{array}{l}x=-1, \\ y=0\end{array}\right.$ 和 $\left\{\begin{array}{l}x=\frac{1}{3}, \\ y=\frac{4}{3} .\end{array}\right.$
（II）消去 y ，得 $\left(k^{2}+2\right) x^{2}+2 k x-1=0$ ，
$\Delta=8 k^{2}+8>0$,
因此，该方程有两个不同的解，该方程组也对应有两组不同的解。
（II）由韦达定理得 $x_{1}+x_{2}=-\frac{2 k}{k^{2}+2}, x_{1} x_{2}=-\frac{1}{k^{2}+2}$ ，
$y_{1}+y_{2}=k\left(x_{1}+x_{2}\right)+2=\frac{4}{k^{2}+2}$,
$y_{1} y_{2}=k^{2} x_{1} x_{2}+k\left(x_{1}+x_{2}\right)+1=\frac{-2 k^{2}+2}{k^{2}+2}$,
所以， $3\left(y_{1}+y_{2}\right)-2 y_{1} y_{2}=\frac{12}{k^{2}+2}-\frac{-4 k^{2}+4}{k^{2}+2}=4$ ，
因此，是定值，且定值为 4 。
19．解：（I）当 $x=6$ 时，$t=25-\frac{k}{6+2}=19$ ，解得 $k=48$ ，
（II）$y=30+x+12\left(25-\frac{48}{x+2}\right), x \geqslant 0$.
（III）设年利润为 W 万元，
则 $W=\frac{y-x}{t} \cdot 2 t-y=y-2 x=30-x+300-\frac{576}{x+2}=332-\left(x+2+\frac{576}{x+2}\right)$ ，
当且仅当 $x+2=24, x=22$ 时，W 取最大值 284 ．
20．解：（I）当 $a=0$ 时，$f(x)=x|x|+2 x$ ，
$f(-x)=-x|-x|-2 x=-f(x)$ ，
因此，$f(x)$ 是 \mathbf{R} 上的奇函数．
（II）$f(x)=\left\{\begin{array}{l}x^{2}+(2-a) x, x \geqslant a, \\ -x^{2}+(2+a) x, x<a .\end{array}\right.$
当 $x \geqslant a$ 时，$\frac{a-2}{2} \leqslant a$ ，解得 $a \geqslant-2$ ；

当 $x<a$ 时，$\frac{a+2}{2} \geqslant a$ ，解得 $a \leqslant 2$ ；
所以，a 的取值范围是 $[0,2]$ ．
（III）因为 $f(x)<2 x+1$ 在 $x \in[1,2]$ 恒成立，即 $x|x-a|<1, x \in[1,2]$ ，
所以，$x-\frac{1}{x}<a<x+\frac{1}{x}$ 恒成立，
考虑 $x-\frac{1}{x} \in\left[0, \frac{3}{2}\right], x+\frac{1}{x} \in\left[2, \frac{10}{3}\right]$ ，
所以，a 的取值范围是 $\left(\frac{3}{2}, 2\right)$

21．解：（I）$\Omega\left(A_{1}\right)$ 中有 4 个元素，$\Omega\left(A_{2}\right)$ 中有 7 个元素．
（II）$\Omega(A)$ 中元素个数的最大值是 31 ，最小值是 11 。
集合 A 的非空子集有 $2^{5}-1=31$ 个，因此，$\Omega(A)$ 中最多有 31 个元素。
集合 $A=\{2,3,5,7,11\}, A$ 中任意两个不同子集元素的乘积不同，
此时，$\Omega(A)$ 中有 31 个元素。
不妨设 $1 \leqslant a_{1}<a_{2}<a_{3}<a_{4}<a_{5}$ ，
则 $a_{1}<a_{2}<a_{3}<a_{4}<a_{5}<a_{2} \cdot a_{5}<a_{3} \cdot a_{5}<a_{4} \cdot a_{5}<a_{2} \cdot a_{4} \cdot a_{5}<a_{3} \cdot a_{4} \cdot a_{5}<a_{2} \cdot a_{3} \cdot a_{4} \cdot a_{5}$ ，所以，$\Omega(A)$ 中至少 11 个元素．
$A=\{1,2,4,8,16\}, \Omega\left(A_{1}\right)=\{1,2,4,8,16,32,64,128,256,512,1024\}$ ，
此时，$\Omega(A)$ 中有 11 个元素．
（III）$\Omega(A)$ 中最少有 13 个元素。
如 $A=\left\{\frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1,2,4,8\right), \Omega(A)=\left\{\frac{1}{64}, \frac{1}{32}, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1,2,4,8,16,32,64\right\}$ ，
此时，$\Omega(A)$ 中有 13 个元素。
证明如下：记 $|A|$ 表示集合 A 中的元素个数，
对集合 A 按照如下分类：

$$
\begin{aligned}
& A_{1}=\{a \mid a \in A, a<1\}, \\
& A_{2}=\{a \mid a \in A, a=1\}, \\
& A_{3}=\{a \mid a \in A, a>1\},
\end{aligned}
$$

设 $\left|A_{1}\right|=x,\left|A_{2}\right|=y,\left|A_{3}\right|=z$ ，则 $x+y+z=7, y \leqslant 1, x+z \geqslant 6$ 。设 $B=\Omega(A)$ ，再对集合 B 按照如下分类：

$$
\begin{aligned}
B_{1} & =\{b \mid b \in B, b<1\} \\
B_{2} & =\{b \mid b \in B, b=1\} \\
B_{3} & =\{b \mid b \in B A, b>1\}
\end{aligned}
$$

设 $\left|B_{1}\right|=p,\left|B_{2}\right|=q,\left|B_{3}\right|=r$ ，
设 $A_{1}=\left\{a_{1}, a_{2}, \cdots, a_{x}\right\}$ ，其中，$a_{1}<a_{2}<\cdots<a_{x}<1$ ，则

$$
\begin{aligned}
& \quad a_{1} a_{2} \cdots a_{x}<a_{1} a_{2} a_{3}<\cdots<a_{1} a_{2} a_{x}<a_{1} a_{2}<a_{1} a_{3}<a_{1} a_{x}<a_{1}<a_{2}<\cdots<a_{x}<1 \text {, } \\
& \text { 故 } p \geqslant x+(x-1)+(x-2)+\cdots+1=\frac{1}{2} x(x+1), \cdots \cdots
\end{aligned}
$$

同理可证，$r \geqslant z+(z-1)+(z-2)+\cdots+1=\frac{1}{2} z(z+1)$ ，
而 $q \geqslant y$ ，因此，

$$
\begin{aligned}
& p+q+r \geqslant \frac{1}{2} x(x+1)+\frac{1}{2} z(z+1)+y=\frac{1}{2}\left(x^{2}+x+z^{2}+z+2 y\right) \\
& =\frac{1}{2}\left(x^{2}-x+z^{2}-z+14\right)=\frac{1}{2}\left[(x+z)^{2}-(x+z)-2 x z\right]+7 \\
& \geqslant \frac{1}{2}\left[(x+z)^{2}-(x+z)-\frac{(x+z)^{2}}{2}\right]+7=\frac{1}{4}\left[(x+z)^{2}-2(x+z)\right]+7
\end{aligned}
$$

1 分
注意到 $6 \leqslant x+z \leqslant 7$ ，
所以，$p+q+r \geqslant \frac{1}{4}\left(6^{2}-2 \times 6\right)+7=13$ ，
当且仅当 $x=z=3, y=1$ 时，等号成立，
1 分
因此，$\Omega(A)$ 中最少有 13 个元素．

