东城区 2023-2024 学年度第一学期期末统一检测

高三数学

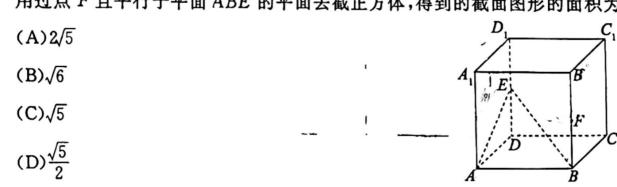
2024.1

本试卷共 6 页, 150 分。考试时长 120 分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)

- 一、选择题共 10 小题,每小题 4 分,共 40 分。在每小题列出的四个选项中,选出符合题目要求的一项。
- (1)已知全集 $U = \{x \mid 0 < x < 4\}$,集合 $A = \{x \mid 0 < x < 2\}$,则 $\mathbb{Q}A = (A)\{x \mid 2 < x < 4\}$ (B) $\{x \mid 2 < x < 4\}$ (C) $\{x \mid 2 < x < 4\}$ (D) $\{x \mid 2 < x < 4\}$
- (2)若复数 z 满足 z(1+i)=i,则 z 的共轭复数 z=

$$(A)\frac{1}{2} + \frac{1}{2}i$$
 $(B) - \frac{1}{2} - \frac{1}{2}i$ $(C) - \frac{1}{2} + \frac{1}{2}i$ $(D)\frac{1}{2} - \frac{1}{2}i$


 $(3)(x+\frac{1}{x})^5$ 的展开式中,x 的系数为

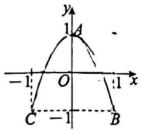
(4)设等比数列 $\{a_n\}$ 的各项均为正数 $.S_n$ 为其前n项和,若 $a_1=2,a_2a_3a_4=a_9$,则 $S_3=$

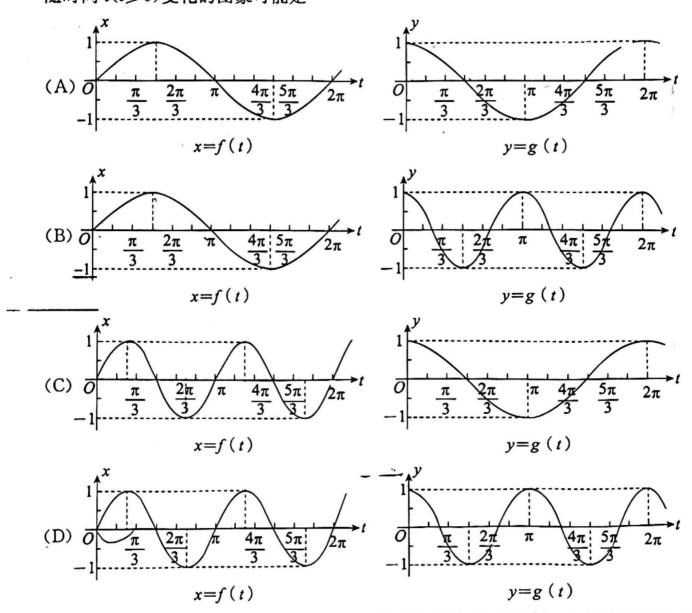
(5)已知非零向量 a,b 满足 |a|=|b|,且 $a\cdot b=0$,对任意实数 λ,μ ,下列结论正确的是

(A)
$$(\lambda a - \mu b) \cdot (\lambda a - \mu b) = 0$$
 (B) $(\lambda a - \mu b) \cdot (\mu a + \lambda b) = 0$ (C) $(\lambda a - \mu b) \cdot (\lambda a + \mu b) = 0$ (D) $(\lambda a + \mu b) \cdot (\mu a + \lambda b) = 0$

(6)如图,在正方体 $ABCD-A_1B_1C_1D_1$ 中,AB=2,E,F 分别是 DD_1 , BB_1 的中点. 用过点 F 且平行于平面 ABE 的平面去截正方体,得到的截面图形的面积为

(7)已知 $a>0,b>0,则"<math>a^{\frac{1}{2}}>b^{\frac{1}{2}}$ "是" $\frac{1}{2^a}<\frac{1}{2^b}$ "的


(A)充分不必要条件


(B)必要不充分条件

(C)充要条件

- (D)既不充分也不必要条件
- (8)一粒子在平面上运动的轨迹为抛物线的一部分,在该平面上建立直角坐标系后,

该粒子的运动轨迹如图所示. 在 t=0 时刻,粒子从点 A(0,1)出发,沿着轨迹曲线运动到 B(1,-1),再沿着轨迹曲线途经 A 点运动到 C(-1,-1),之后便沿着轨迹曲线在 B,C 两点之间循环往复运动. 设该粒子在 t 时刻的位置对应点 P(x,y),则坐标 x,y 随时间 $t(t \ge 0)$ 变化的图象可能是

(9)已知线段 AB 的长度为 10,M 是线段 AB 上的动点(不与端点重合).点 N 在圆心为 M, 半径为 MA 的圆上,且 B,M,N 不共线,则 $\triangle BMN$ 的面积的最大值为

 $(A)\frac{25}{2}$

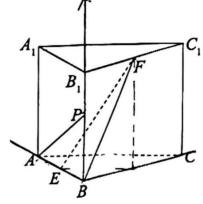
 $(B)\frac{25}{4}$

 $(C)\frac{25\sqrt{3}}{2}$

(D) $\frac{25\sqrt{3}}{4}$

(10)	设函数 $f(x) = \cos x + \sqrt{\cos 2x}$,对于下列四个判断:	
	①函数 $f(x)$ 的一个周期为 π ;	į
	②函数 $f(x)$ 的值域是 $\left[-\frac{\sqrt{2}}{2},2\right]$;	
	③函数 $f(x)$ 的图象上存在点 $P(x,y)$,使得其到点(1,0)的距离为 $\frac{\sqrt{2}}{2}$;	
	④当 $x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ 时,函数 $f(x)$ 的图象与直线 $y=2$ 有且仅有一个公共点	
	正确的判断是	
	A.① B.② C.③ D.④ (本本文) (本文) (
	第二部分(非选择题 共 110 分)	
二、:	填空题共 5 小题, 每小题 5 分, 共 25 分。	
(11))函数 $f(x) = \frac{1}{x \ln x}$ 的定义域为	
(12))已知双曲线 $C: \frac{y'}{4} - \frac{x^2}{2} = 1$,则双曲线 C 的渐近线方程是;直线 $x = 1$ 与	
	双曲线相交于 M,N 两点,则 $ MN =$	
(13)已知函数 $f(x) = \sin(x+\varphi)(\varphi > 0)$,若 $f(-\frac{\pi}{6}) = f(\frac{\pi}{2})$,则 φ 的一个取值为	
(14)设函数 $f(x) = \begin{cases} 2^x - 1, x < a, \\ x^2 + a, x \geqslant a. \end{cases}$	
	①若 $a=-2$,则 $f(x)$ 的最小值为;	
	②若 $f(x)$ 有最小值,则实数 a 的取值范围是	
(15)	$)$ 一般地,对于数列 $\{a_n\}$,如果存在一个正整数 t ,使得当 n 取每一个正整数时,都有	
	$a_{n+1}=a_n$,那么数列 $\{a_n\}$ 就叫做周期数列, t 叫做这个数列的一个周期.给出下列	
	四个判断:	
	①对于数列 $\{a_n\}$,若 $a_i \in \{1,2\}$ $(i=1,2,3,\cdots)$,则 $\{a_n\}$ 为周期数列;	
	②若 $\{a_n\}$ 满足 $:a_{2n}=a_{2n+2},a_{2n-1}=a_{2n+1}(n\in\mathbb{N}^*)$,则 $\{a_n\}$ 为周期数列;	
	③若 $\{a_n\}$ 为周期数列,则存在正整数 M ,使得 $ a_n < M$ 恒成立;	
	④已知数列 $\{a_n\}$ 的各项均为非零整数 $,S_n$ 为其前 n 项和,若存在正整数 M ,使得	
	$ S_n < M$ 恒成立,则 $\{a_n\}$ 为周期数列.	
	其中所有正确判断的序号是	
	高三数学 第3页(共6页)	

三、解答题共6小题,共85分。解答应写出文字说明、演算步骤或证明过程。


(16)(本小题 14 分)

如图,在直三棱柱 $ABC-A_1B_1C_1$ 中, $\angle ABC=90^\circ$, $AB=BC=BB_1=2$,E,F 分为 AB, B_1C_1 的中点.

(I)求证:EF//平面 ACC₁A₁;

(II)若点 P 是棱 BB_1 上一点,且直线 AP 与平面 BEF 所成角的正弦值为 $\frac{1}{5}$,求线段 BP 的长.

(17)(本小题 13 分)

在 $\triangle ABC$ 中,BC=4, $AC=\sqrt{13}$,AB=1

(I)求*∠B*;

(II)若 D为 BC 边上一点,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使 $\triangle ABD$ 存在且唯一确定,求 $\triangle ABD$ 的面积.

条件①:
$$\angle ADB = \frac{\pi}{4}$$
;

条件②:
$$AD = \frac{2\sqrt{2}}{3}$$
;

条件③: $\triangle ABD$ 的周长为 $3+\sqrt{3}$.

注:如果选择的条件不符合要求,第(Ⅱ)问得 0 分;如果选择多个符合要求的条件 分别解答,按第一个解答计分.

(18)(本小题 13 分)

某科目进行考试时,从计算机题库中随机生成一份难度相当的试卷.规定每位 学有三次考试机会,一旦某次考试通过,该科目成绩合格,无需再次参加考试,否则就继续参加考试,直到用完三次机会.现从 2022 年和 2023 年这两年的第一次、第二次、第三次参加考试的考生中,分别随机抽取 100 位考生,获得数据如下表:

	2022 年		2023 年	
	通过	未通过	通过	未通过
第一次	60 人	40 人	50 人 (50 人
第二次	70 人	30 人	60 人	40 人
第三次	80人	20 人	<i>m</i> 人	(100-m)人

假设每次考试是否通过相互独立.

- (I)从 2022 年和 2023 年第一次参加考试的考生中各随机抽取一位考生,估计这两位 考生都通过考试的概率;
- (Ⅱ)小明在 2022 年参加考试,估计他不超过两次考试该科目成绩合格的概率;
- (Ⅲ)若 2023 年考生成绩合格的概率不低于 2022 年考生成绩合格的概率,则 m 的最小值为下列数值中的哪一个?(直接写出结果)

m 的值	83	88	93

(19)(本小题 15 分)

已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)的右焦点为 $F, E, 右顶点分别为 <math>A, B, \Box$

$$|AF| = 2 + \sqrt{3}, |BF| = 2 - \sqrt{3}.$$

- (I)求椭圆 C 的方程;
- (II)设 O 是坐标原点,M,N 是椭圆 C 上不同的两点,且关于 x 轴对称,E,G 分别为线段 OM,MB 的中点,直线 AE 与椭圆 C 交于另一点 D. 证明 :D,G,N 三点共线.

(20)(本小题 15 分)

已知函数
$$f(x) = \frac{x-1}{x+1} - ke^x, k > 0.$$

- (I)若 k=1,求曲线 y=f(x)在(0,f(0))处的切线方程;
- (Ⅱ)若 1 $\leq k < 2$,求证:函数 y = f(x)在(0,+ ∞)上有极大值 m,且-3 < m < 1.

(21)(本小题 15 分)

若有穷数列 $A: a_1, a_2, \dots, a_n (n > 4)$ 满足 $: a_i + a_{n+1-i} = c(c \in \mathbb{R}, i = 1, 2, \dots, n)$,则称此数列具有性质 P_c .

- (I)若数列 $A: -2, a_2, a_3, 2, 6$ 具有性质 $P_c, 求 a_2, a_3, c$ 的值;
- (II)设数列 A 具有性质 P_0 ,且 $a_1 < a_2 < \cdots < a_n$,n 为奇数,当 a_i , $a_j > 0$ (1 $\leqslant i$, $j \leqslant n$)时, 存在正整数 k,使得 $a_j - a_i = a_k$,求证:数列 A 为等差数列;
- (III)把具有性质 P_c ,且满足 $|a_{2k-1}+a_{2k}|=m(k\in\mathbb{N}^*,k\leq\frac{n}{2},m$ 为常数)的数列 A 构成的集合记作 $T_c(n,m)$. 求出所有的 n,使得对任意给定的 m,c,当数列 $A\in T_c(n,m)$ 时,数列 A 中一定有相同的两项,即存在 $a_i=a_j (i\neq j,1\leqslant i,j\leqslant n)$.

东城区 2023—2024 学年度第一学期期末统一检测

高三数学参考答案及评分标准

2024.1

- 一、选择题(共10小题,每小题4分,共40分)
- (1) C
- (2) D
- (3) C
- (4) D (5) B

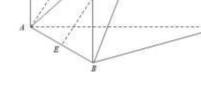
- (6) A
- (7) C
- (8) B
- (9) A (10) D
- 二、填空题(共5小题,每小题5分,共25分)

- (11) (0,1) $\cup (1,+\infty)$ (12) $y = \pm \sqrt{2}x$ $2\sqrt{6}$ (13) $\frac{\pi}{3}$ (答案不唯一)
- $(14) (1)-2 (2) (-\infty,-1] (15) (2)(3)$
- 三、解答题(共6小题,共85分)
- (16) (共14分)

解: (I) 取 A_1C_1 中点G, 连接FG, AG.

在直三棱柱 $ABC - A_1B_1C_1$ 中,

因为E,F,G分别为 AB,B_1C_1 , A_1C_1 的中点,


所以 $AE \parallel A_1B_1, GF \parallel A_1B_1, GF = \frac{1}{2}A_1B_1, AE = \frac{1}{2}A_1B_1$.

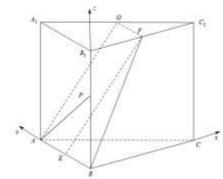
所以 $GF /\!\!/ AE$, GF = AE.

所以四边形 EFGA 为平行四边形,

所以 EF // AG.

又因为EF eq 平面 ACC_1A_1 , $AG \subset$ 平面 ACC_1A_1 , 所以EF//平面 ACC_1A_1 .

(II) 在直三棱柱 $ABC - A_1B_1C_1$ 中, $BB_1 \perp$ 平面 ABC.


而 $BA \subset$ 平面 ABC , $BC \subset$ 平面 ABC ,

所以 $BB_1 \perp BA$, $BB_1 \perp BC$

因为 $\angle ABC = 90^{\circ}$, $BA \perp BC$,

所以BA, BC, BB, 两互相垂直.

如图,建立空间直角坐标系B-xyz.

则A(0, 2, 0), B(0, 0, 0), C(2, 0, 0), E(0, 1, 0), r(1, 0, 2).

设 $P(0, 0, m), m \in [0,2],$

则 $\overrightarrow{AP} = (0, -2, m)$, $\overrightarrow{BE} = (0, 1, 0)$, $\overrightarrow{BF} = (1, 0, 2)$.

设平面 BEF 的一个法向量为 $\mathbf{n} = (x, y, z)$,

所以
$$\begin{cases} \boldsymbol{n} \cdot \overrightarrow{BE} = 0, \\ \boldsymbol{n} \cdot \overrightarrow{BF} = 0, \end{cases}$$
 即 $\begin{cases} y = 0, \\ x + 2z = 0. \end{cases}$

设
$$z = -1$$
,则 $n = (2,0,-1)$

设AP与平面BEF所成的角为 θ ,

$$\operatorname{FI}\sin\theta = \left|\cos\langle\overrightarrow{AP}, \boldsymbol{n}\rangle\right| = \frac{\left|\overrightarrow{AP} \cdot \boldsymbol{n}\right|}{\left|\overrightarrow{AP}\right| \cdot \left|\boldsymbol{n}\right|} = \frac{\left|-\boldsymbol{m}\right|}{\sqrt{5}\sqrt{(-2)^2 + m^2}} = \frac{1}{5}.$$

解得 $m^2 = 1, m = \pm 1$.因为 $m \in [0,2]$,所以m = 1.

于是, BP=1.14 分

(17) (本小题 13 分)

解: (I) 在 $\triangle ABC$ 中,由余弦定理得

$$\cos B = \frac{BC^2 + AB^2 - AC^2}{2BC \cdot AB}$$

又因为BC = 4, $AC = \sqrt{13}$,AB = 1,

所以
$$\cos B = \frac{4^2 + 1^2 - (\sqrt{13})^2}{2 \times 4 \times 1} = \frac{1}{2}$$
.

(II) 选择条件①:
$$\angle ADB = \frac{\pi}{4}$$
.

在
$$\triangle ADB$$
 中,由正弦定理 $\frac{AD}{\sin B} = \frac{AB}{\sin \angle ADB}$,得 $\frac{\frac{AD}{\sqrt{3}}}{\frac{2}{3}} = \frac{1}{\frac{\sqrt{2}}{2}}$,

所以
$$AD = \frac{\sqrt{6}}{2}$$
.

所以
$$\sin \angle BAD = \sin(\angle B + \angle ADB)$$

$$= \sin B \cos \angle ADB + \cos B \sin \angle ADB$$
$$= \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} + \frac{1}{2} \times \frac{\sqrt{2}}{2}$$

$$=\frac{\sqrt{6}+\sqrt{2}}{4}.$$

所以
$$S_{\Delta ABD} = \frac{1}{2}AB \cdot AD \sin \angle BAD$$
.
$$= \frac{1}{2} \times 1 \times \frac{\sqrt{6}}{2} \times \frac{\sqrt{6} + \sqrt{2}}{4}$$

$$= \frac{3 + \sqrt{3}}{8} . \qquad 13 \%$$

高三数学参考答案及评分标准 第2页(共6页)

选择条件③: 由余弦定理 $AD^2 = AB^2 + BD^2 - 2AB \cdot BD \cos B$, $AB + BD + AD = 3\sqrt{3}$,

得
$$(2+\sqrt{3}-BD)^2=1+BD^2-BD$$
,

解得 BD=2,

(18) (本小题 13 分)

解:(I)由表格中的数据可知:

2022年100名参加第一次考试的考生中有60名通过考试, 所以估计考生第一次考试

通过的概率为
$$\frac{60}{100} = \frac{3}{5}$$
;

2023 年 100 名参加第一次考试的考生中有 50 名通过考试, 所以估计考生第一次考试 通过的概率为 $\frac{50}{100} = \frac{1}{2}$;

(II) 记"2022 年考生在第i次考试通过"为事件A(i=1,2,3),

"小明 2022 年参加考试,他通过不超过两次考试该科目成绩合格"为事件 A,

$$\mathbb{P}(A_1) = \frac{3}{5}, P(A_2) = \frac{70}{100} = \frac{7}{10}, P(A_3) = \frac{80}{100} = \frac{4}{5}.$$

小明一次考试该科目成绩合格的概率 $P(A_1) = \frac{3}{5}$,

小明两次考试该科目成绩合格的概率

$$P(\overline{A_1}A_2) = (1 - \frac{3}{5}) \times \frac{7}{10} = \frac{7}{25}$$

所以小明不超过两次考试该科目成绩合格的概率

(19) (本小题 15 分)

解: (I) 由题意得
$$\begin{cases} a+c=2+\sqrt{3},\\ a-c=2-\sqrt{3},\\ a^2=b^2+c^2, \end{cases}$$

解得
$$\begin{cases} a = 2, \\ b = 1, \\ c = \sqrt{3}. \end{cases}$$

(Ⅱ) 证明: 由(Ⅰ)得, A(-2,0),B(2,0).

设M(m,n),则N(m,-n),且满足 $m^2+4n^2=4$.

因为 E 为线段 OM 的中点,所以 $E\left(\frac{m}{2},\frac{n}{2}\right)$.

所以直线
$$AE: y = \frac{n}{m+4}(x+2)$$
.

设 $D(x_1, y_1)$,

因为
$$m^2 + 4n^2 = 4$$
, 所以 $(2m+5)x^2 + (4-m^2)x - (2m^2 + 8m + 12) = 0$.

所以
$$-2x_1 = -\frac{2m^2 + 8m + 12}{2m + 5}$$
,解得 $x_1 = \frac{m^2 + 4m + 6}{2m + 5}$,则 $y_1 = \frac{n(m + 4)}{2m + 5}$,

所以
$$D\left(\frac{m^2+4m+6}{2m+5},\frac{n(m+4)}{2m+5}\right)$$
.

因为G 为线段MB的中点,所以 $G\left(\frac{m+2}{2},\frac{n}{2}\right)$.

所以直线 GN 的方程为 $y+n=-\frac{3n}{m-2}(x-m)$,

代入D点坐标,得

左式=
$$\frac{n(m+4)}{2m+5}$$
+ $n=\frac{3n(m+3)}{2m+5}$,

右式=
$$\frac{3n}{2-m}\left(\frac{m^2+4m+6}{2m+5}-m\right)=\frac{3n(m+3)}{2m+5}$$
.

所以左式=右式.

所以 *D,G,N* 三点共线.15 分

(20) (本小题 15 分)

解: (I) 若
$$k = 1$$
, 则 $f(x) = \frac{x-1}{x+1} - e^x$,

所以
$$f'(x) = \frac{2}{(x+1)^2} - e^x$$
,

所以
$$f'(0) = \frac{2}{(0+1)^2} - e^0 = 1$$
,

又因为
$$f(0) = \frac{0-1}{0+1} - e^0 = -2$$
,

所以曲线 y = f(x) 在 (0, f(0)) 处的切线方程为 y - (-2) = (x - 0),

高三数学参考答案及评分标准 第 4 页 (共 6 页)

(II) 若
$$1 \le k < 2$$
,因为 $f'(x) = \frac{2}{(x+1)^2} - ke^x$,

设函数
$$g(x) = \frac{2}{(x+1)^2} - ke^x$$
,

则
$$g'(x) = -\frac{4}{(x+1)^3} - ke^x < 0 \ (x ∈ (0,+\infty))$$

所以
$$f'(x) = \frac{2}{(x+1)^2} - ke^x 为 (0, +\infty)$$
 上的减函数.

当时
$$1 \le k < 2$$
时, $f'(0) = \frac{2}{(0+1)^2} - ke^0 = 2 - k \le 0$,

$$f'(\frac{1}{2}) = \frac{2}{(\frac{1}{2}+1)^2} - ke^{\frac{1}{2}} = \frac{8}{9} - ke^{\frac{1}{2}} < \frac{8}{9} - e^{\frac{1}{2}} < 0$$

所以存在
$$x_0 \in (0, \frac{1}{2})$$
 , 使得 $f'(x_0) = 0$, 即 $\frac{2}{(x_0 + 1)^2} - ke^{x_0} = 0$.

当 x 变化时有

x	$(0, x_0)$	x_0	$(x_0, +\infty)$
f'(x)	+	0	_
f(x)	1	极大值	`

所以当 $1 \le k < 2$ 时,函数y = f(x)在 $(0,+\infty)$ 上有极大值.

$$m = f(x_0) = \frac{x_0 - 1}{x_0 + 1} - ke^{x_0}$$
,

$$\pm \frac{2}{(x_0+1)^2} - ke^{x_0} = 0, \quad \text{if } m = \frac{x_0-1}{x_0+1} - \frac{2}{(x_0+1)^2} = -\frac{2}{(x_0+1)^2} - \frac{2}{x_0+1} + 1.$$

因为
$$x_0 > 0$$
,所以 $\frac{1}{x_0 + 1} \in (0,1)$.

(21) (本小题 15 分)

解: (I) 由于数列 A:-2, a_2 , a_3 ,2,6 具有性质 P_c ,

所以
$$a_1 + a_5 = -2 + 6 = 4 = c$$
.

由 $a_2 + a_4 = 4$ 以及 $a_4 = 2$, 得 $a_2 = 2$.

由
$$a_3 + a_3 = 4$$
,得 $a_3 = 2$.

(II) 由于数列 A 具有性质 P_0 , 且 $a_1 < a_2 < \dots < a_n$, n 为奇数, 令 n = 2k + 1, 可得 $a_{k+1} = 0$,

由于当 a_i , $a_i > 0$ ($1 \le i$, $j \le n$) 时, 存在正整数k, 使得 $a_i - a_i = a_k$,

所以 $a_{k+3} - a_{k+2}$, $a_{k+4} - a_{k+2}$, $a_{k+5} - a_{k+2}$, \cdots , $a_{2k+1} - a_{k+2}$ 这k-1 项均为数列 A 中的项,

且
$$0 < a_{k+3} - a_{k+2} < a_{k+4} - a_{k+2} < a_{k+5} - a_{k+2} < \dots < a_{2k+1} - a_{k+2} < a_{2k+1}$$
,因此一定有

$$a_{k+3} - a_{k+2} = a_{k+2}$$
, $a_{k+4} - a_{k+2} = a_{k+3}$, $a_{k+5} - a_{k+2} = a_{k+4}$, ..., $a_{2k+1} - a_{k+2} = a_{2k}$,

$$\exists \mathbb{P} \colon \ a_{k+3} - a_{k+2} = a_{k+2}, \ a_{k+4} - a_{k+3} = a_{k+2}, \ a_{k+5} - a_{k+4} = a_{k+2} \ , \cdots, \ a_{2k+1} - a_{2k} = a_{k+2} \ ,$$

这说明: a_{k+2} , a_{k+3} , …, a_{2k+1} 为公差为 a_{k+2} 的等差数列, 再由数列 A 具有性质 P_0 , 以及

(III) (1) $\stackrel{\text{def}}{=}$ $n = 4k + 2(k ∈ N^*)$ \forall m,

设
$$A: a_1, a_2, \cdots, a_{2k-1}, a_{2k}, a_{2k+1}, a_{2k+2}, a_{2k+3}, a_{2k+4}, \cdots, a_{4k+1}, a_{4k+2}$$
.

由于此数列具有性质 P_c , 且满足 $|a_{2k+1} + a_{2k+2}| = m$,

$$\dot{a}$$
 \dot{a} \dot{a}

- ① c = m 时,不妨设 $a_1 + a_2 = m$,此时有: $a_2 = m a_1$, $a_{4k+1} = a_1$,此时结论成立.
- ② c=-m时,同理可证.

所以结论成立.

(2)当 $n = 4k(k ∈ N^*)$ 时,不妨设c = 0,m = 1. 反例如下:

$$-2k$$
, $2k-1$, $-2k+2$, $2k-3$, ..., 1 , -1 , 2 , ..., $-2k+3$, $2k-2$, $-2k+1$, $2k$.

(3)当 $n = 2k + 3(k \in \mathbb{N}^*)$ 时,不妨设c = 0,m = 1. 反例如下:

$$(-1)^{k+1} \cdot (k+1), (-1)^k \cdot k, (-1)^{k-1} \cdot (k-1), \dots, -1, 0, 1, -2, \dots, (-1)^{k-2} \cdot (k-1),$$

$$(-1)^{k-1} \cdot k$$
, $(-1)^k \cdot (k+1)$

