通州区 2019－2020 学年第一学期九年级期中学业水平质量检测数 学 试 卷学校 \qquad班级 2019年11月
考
生
须
知 1．本试卷共 6 页，共三洋大明 姓名

2．在试卷和答题卡上准确填写学校小题，满分 100 分，考试时间 120 分钟，
3．试题答案一律填涂或书等，班级，姓名。
4．在答题卡上，先的题卡上，在试卷上作答无效。
具，其他试题用黑色字迹签字笔作答．
一，选择题（本题共 8 个小题，每小题 2 分，共 16 分．每小题只有一个正确选项）
1．在函数 $y=-3 x^{2}+2 x-1$ 中，其二次项系数，一次项系数和常数项分别为
A． $3,2,-1$
B． $3,-2,1$
C．$-3,2,-1$
D，$-3,-2,-1$

2．已知 $3 a=4 b$ ，则 $\frac{a}{b}$ 的值为
A．$\frac{3}{4}$
B．$\frac{4}{3}$
C．$\frac{3}{7}$
D．$\frac{4}{7}$

3．抛物线 $y=-(x+2)^{2}$ 的顶点坐标为
A．$(-1,-2)$
B．$(-2,-1)$
C．$(2,0)$
D．$(-2,0)$

4．如图，在 $\triangle A B C$ 中，$D E / / B C, A D=3 B D, D E=9$ ，则 $B C$ 的长为
A． 12
B． 16
C． 24
D． 36

5．在平面直角坐标系 $x O y$ 中，点 $A(1, b)$ 在双曲线 $y=\frac{2}{x}$ 上，点 A 关于 y 轴的对称点 B 在反比例函数 $y=\frac{k}{x}$ 的图象上，则 k 的值为
A．-4
B．-2
C． 2
D． 4

6．在平面直角坐标系 $x O y$ 中，抛物线 $y=-x^{2}+a x+1$ 与 y 轴交于点 A ，将点 A 向左平移两个单位长度，得到点 B ．若点 B 也在该抛物线上，则 a 的值为
A．-2
B．-1
C． 1
D． 2

7．在平面直角坐标系 $x O y$ 中，反比例函数 $y=\frac{k}{x}$ 在第一象限的图象如图所示．下列数值中，可能是 k 值的为
A．-3
B． 2
C． 4
D． 6

8．在关于 n 的函数 $S=a n^{2}+b n$ 中，n 为自然数．当 $n=9$ 时，$S<0$ ：当 $n=10$ 时，$S>0$ ．则当 S的值最小时，n 的值为
A． 3
B． 4
C． 5
D． 6

 \qquad $+$
为 \qquad －

大小夫系透 \qquad $-$
 \qquad ．
虳国为 \qquad ．

 の山为 \qquad （统竍年）

18．如谋，在 RI $\triangle A B C$ 中，$\angle A C B=90^{\circ}, C D \perp A B$ 干点 D ．若 $B C=5, A C=12$ ，求 $C D$ 的长．

19．如图．以矩形 $A B C D$ 的宽为边作正方形 $A E F D$ ．若矩形 $E B C F$ 的宽与长的比值等于矩形 $A B C D$ 的宽与长的比值，则将矩形 $A B C D$ 称为＂黄金矩形＂．若 $A D=2$ ，求 $B E$ 的长．

20．密闭容器内有一定质量的二氧化碳．当容器的体积 $V\left(\right.$ 单位 $\left.: m^{3}\right)$ 变化时，气体的密度 $\rho($ 单位： $\mathrm{kg} / \mathrm{m}^{2}$ ）随之变化．已知密度 ρ 与体积 V 是反比例函数关系，它的图象如图所示，当 $V=9 \mathrm{~m}^{\prime}$ 时，求二氧化碳的密度 ρ ．

21．已知函数 $y=x^{2}+b x+c$ 在 $x=0$ 和 $x=4$ 时的函数值相等，且函数的最小值为 -2 ，求函数的表达式．

22．如图，在矩形 $A B C D$ 中，E 是边 $A B$ 的中点，连接 $D E$ 交对角线 $A C$ 于点 F ．若 $A B=8$ ， $A D=6$ ，求 $C F$ 的长．

23．有一块如图所示的铁片下脚料，其中曲线是一条抛物线的一部分．从该铁片下脚料上裁出了一个边长为 4 cm 的正方形 $C D E F$ ，该正方形的一边在线段 $A B$ 上，对边的端点在抛物线上．建立平面直角坐标系，求出拋物线的表达式．

 $A D=3$ ，求 $A E$ 的长．

25．如图，在平面直角坐标系 $a O y$ 中，直线 $y=2$ 与反比侧雨数 $y=\frac{k}{r}$ 交厂点 $A(-1, n)$ ，
（1）求出反比例函数的表达式；
（2）结合函数图象，直接写出不等式 $-n<\frac{k}{x}<n$ 的解集，

26．如图，在钝角 $\triangle A B C$ 中，点 P 为 $B C$ 上的一个动点，连接 $P A$ ．将射线 $P A$ 结点 P 逆时伸旋转 60° ，交线段 $A C$ 于点 D ．已知 $\angle B=60^{\circ}, B C=6,70 \mathrm{~cm}$ ，设 B, P 丽点间的脽哭为 $x \mathrm{~cm}, A, D$ 两点间的距离为 $y \mathrm{~cm}$ ．

小牧根据学习函数的经验，对函数 y 随自变量 x 的变化而变化的炠侓进行了探究。
下面是小牧探究的过程，凊补充完整：
（1）通过取点，画图，测量，得到了 x 与 y 的几组值，如下表：

x / cm	\cdots	0.87	1.47	2.44	2.99	3.76	4.46	5.20	6.00	6.70
y / cm	\ldots	2.70	2.10	2.10	2.37	2.91	3.52	4.26	3.10	m

道过测量，可以得到 m 的值为 \qquad ；
政团家，

 \square （im．

求 m 的取值施国。

28．在平面直角坐标系 $x O y$ 中，点 P 为平而内佂意一点，学过 P 多别任 x 轴，y 䟽的面线，则称这两条冉线段与 x 轴，y 轴国成的图彬而积为点 P 的＂S 值＂。 （1）（1）点 $A(2.3)$ 的＂S 值＂为 \qquad ；
（2）若点 B 为双曲线 $y=-\frac{5}{x} \perp$ 佂意一点，则点 B 的＂S 作＂为 \qquad ；
（2）已知直线 $y=-\frac{1}{2} x+2$ 与 x 轴，y 斩分别交于点 M，N．
（1）若点 C 为线段 $M N$ 上任澺一点，C 的＂S 作＂为 a ，求 a 的取值他明

