2021 北京西城初三(上)期末

数学

2021.1

1.本试卷共6页,共三道大题,25道小题。满分100分。考试时间120分钟。

考

2.在试卷和答题卡上准确填写学校、班级、姓名和学号。

生须

3.试题答案一律填写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束时,将本试卷、答题卡一并交回。

一、选择题(本题共24分,每小题3分)

第1~8题均有四个选项,符合题意的选项只有一个.

1.在抛物线 y=x2-4x-5.上的一个点的坐标为

A.(0,-4)

B.(2,0)

C.(1,0)

D.(-1,0)

2.在半径为 6cm 的圆中, 60°的圆心角所对弧的弧长是

A.π cm

 $B.2\pi$ cm

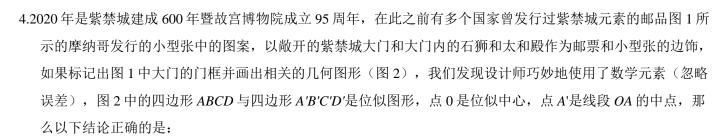
 $C.3\pi$ cm

 $D.6\pi$ cm

3.将抛物线 $y=x^2$ 先向右平移 3 个单位长度,再向上平移 5 个单位长度,所得抛物线的解析式为

A.
$$y=(x+3)^2+5$$
B. $y=(x-3)^2+5$

C.
$$y=(x+5)^3+3$$
 D. $y=(x-5)^2+3$



A.四边形 ABCD 与四边形 A'B'C'D'的相似比为 1:1

B.四边形 ABCD 与四边形 A'B'C'D'的相似比为 1:2

C.四边形 ABCD 与四边形 A'B'C'D'的周长比为 3:1

D.四边形 ABCD 与四边形 A'B'C'D'的面积比为 4:1

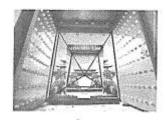
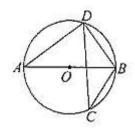


图 1

图 2

5.如图, AB 是 $\odot O$ 的直径, CD 是弦, 若 $\angle CDB = 32^{\circ}$, 则 $\angle ABC$ 等于

- A. 68°
- B. 64°
- C. 58°
- D. 32°



6.若抛物线 $y=ax^2+bx+c$ ($a\neq 0$) 经过 A(1,0), B(3,0)两点,则抛物线的对称轴为

- A. x = 1
- B. x=2 C. x=3 D. x=4

7.近年来我国无人机产业迅猛发展,无人机驾驶员已正式成为国家认可的新职业,中国民用航空局的现有统计数据 显示,从 2017 年底至 2019 年底,全国拥有民航局颁发的民用无人机驾驶执照的人数已由约 2.44 万人增加到约 6.72 万人. 若设 2017 年底至 2019 年底,全国拥有民用无人机驾驶执照人数的年平均增长率为 x,则可列出关于 x的方程为

- A. 2.44(1+x)=6.72
- B. 2.44(1+2x)=6.72
- C. $2.44(1+x)^2 = 6.72$ D. $2.44(1-x)^2 = 6.72$

8.现有函数 $y = \begin{cases} x+4(x < a) \\ x^2-2x(x \ge a) \end{cases}$ 如果对于任意的实数 n,都存在实数 m,使得当 x=m 时,y=n,那么实数 a 的取

值范围是

A. $-5 \le a \le 4$

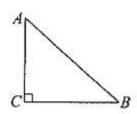
B. $-1 \le a \le 4$

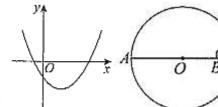
C. −4≤*a*≤1

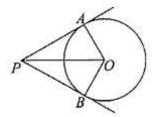
D. $-4 \le a \le 5$

二、填空题(本题共24分,每小题3分)

- 9.若正六边形的边长为 2,则它的半径为。
- 10.若抛物线 $y=ax^2$ (a#0) 经过 A(1, 3), 则该抛物线的解析式为 。
- 11.如图,在 $Rt\triangle ABC$ 中, $\angle C=90^{\circ}$,AC=6,AB=9,则 $\sin B=$ ______.
- 12.若抛物线 $y=ax^2+bx+c$ (a+0) 的示意图如图所示,则 a 0, b 0, c 0 (填">","="或"<")
- 13.如图,AB 为 O0 的直径,AB=10,CD 是弦, $AB\perp CD$ 于点 E,若 CD=6,则 EB=_____.
- 14.如图, PA, PB 是⊙O 的两条切线, A, B 为切点, 若 OA = 2, $\angle APB$ = 60°, 则 PB = _____.



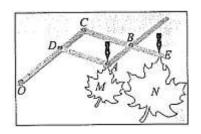




15.放缩尺是一种绘图工具,它能把图形放大或缩小.

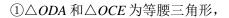
制作:把钻有若干等距小孔的四根直尺用螺栓分别在点A,B,C,D处连接起来,使得直尺可以绕着这些点转动,O为固定点,OD=DA=CB,DC=AB=BE,在点A,E处分别装上画笔.

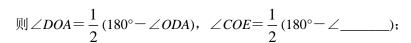
画图:现有一图形M,画图时固定点O,控制点A处的笔尖沿图形M的轮廓线移动,此时点E处的画笔便画出了将图形M放大后的图形N.



原理:

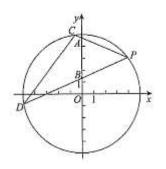
若连接 OA, OE, 可证得以下结论:





- ②四边形 ABCD 为平行四边形(理由是____);
- ③ $\angle DOA = \angle COE$, 于是可得 O, A, E三点在一条直线上:

16.如图,在平面直角坐标系 xOy 中,P(4, 3), $\bigcirc O$ 经过点 P.点 A,点 B 在 y 轴上,PA=PB,延长 PA,PB 分别交 $\bigcirc O$ 于点 C,点 D,设直线 CD 与 x 轴正方向所夹的锐角为 α .

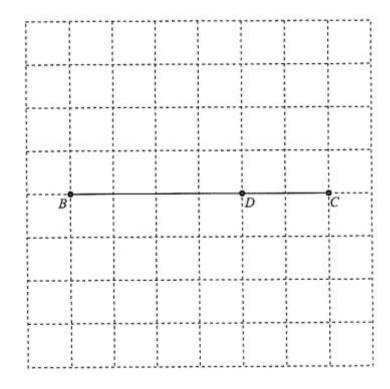


- (1) ⊙0的半径为_____;
- (2) $\tan \alpha = \underline{}_{\circ}$

- 三、解答题(本题共52分,第17、18、20~22题每小题5分,第19题6分,第23~25题每小题7分)
- 17.计算: 2sin60°-tan45°+cos-30°.
- 18.已知关于 x 的方程 $x^2+2x+k-4=0$.
 - (1) 如果方程有两个不相等的实数根,求k的取值范围;
 - (2) 若 k=1, 求该方程的根.
- 19.借助网格画图并说理:

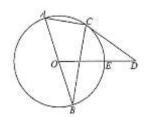
如图所示的网格是正方形网格, $\triangle ABC$ 的三个顶点是网格线的交点,点 A 在 BC 边的上方, $AD \bot BC$ 于点 D,BD=4,CD=2,AD=3。以 BC 为直径作 $\bigcirc O$,射线 DA 交 $\bigcirc O$ 于点 E,连接 BE,CE.

- (1) 补全图形;
- (2) 填空: ∠BEC=_____°, 理由是____;
- (3) 判断点 A 与 $\odot O$ 的位置关系并说明理由;
- (4) *∠BAC______∠BEC* (填">", "="或"<").

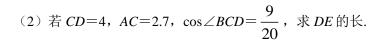


- 20.二次函数 $y=ax^2+bx+c$ ($a\neq 0$) 的图象经过 (3, 0) 点, 当 x=1 时, 函数的最小值为一4.
 - (1) 求该二次函数的解析式并画出它的图象;
 - (2)直线 x=m 与抛物线 $y=ax^2+bx+c$ ($a\neq 0$)和直线 y=x-3 的交点分别为点 C,点 D,点 C 位于点 D 的上方,结合函数的图象直接写出 m 的取值范围.

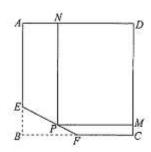
21.如图, AB 为 00 的直径, AC 为弦, 点 D 在 \bigcirc O 外, $\angle BCD = \angle A$, OD 交 \bigcirc O 于点 E.



(1) 求证: CD 是⊙O的切线;



22.如图,正方形 ABCD 的边长为 4,点 E 在 AB 边上,BE=1,F 为 BC 边的中点.将正方形截去一个角后得到一个 五边形 AEFCD,点 P 在线段 EF.上运动(点 P 可与点 E,点 F 重合),作矩形 PMDN,其中 M,N 两点分别在 CD,AD 边上.



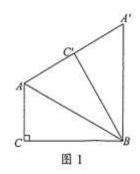
设 CM=x, 矩形 PMDN 的面积为 S.

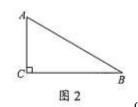
- (1) $DM = ____($ (用含x的式子表示),x的取值范围是_____;
- (2) 求S与x的函数关系式;
- (3) 要使矩形 PMDN 的面积最大,点 P 应在何处?并求最大 EL 面积.

23.己知抛物线 $y = \frac{1}{2}x^2 + x$.

- (1) 直接写出该抛物线的对称轴,以及抛物线与y轴的交点坐标;
- (2) 已知该抛物线经过A(3n+4, y_1), B(2n-1, y_2)两点.
- ①若 n < -5,判断 y_1 与 y_2 的大小关系并说明理由;
- ②若 A,B 两点在抛物线的对称轴两侧,且 $y_1 > y_2$,直接写出 n 的取值范围.

- 24.在 $Rt\triangle ABC$ 中, $\angle ACB$ =90°, $\angle ABC$ =30°,BC= $\sqrt{3}$.将 $\triangle ABC$ 绕点 B 顺时针旋转 α (0° $<\alpha \le 120$ °)得到 $\triangle A'BC'$,点 A,点 C 旋转后的对应点分别为点 A',点 C'.
 - (1) 如图 1, 当点 C恰好为线段 AA的中点时,a=_____。, AA'=____;
 - (2) 当线段 AA'与线段 CC'有交点时,记交点为点 D.
 - ①在图 2 中补全图形,猜想线段 AD 与 A'D 的数量关系并加以证明;
 - ②连接 BD,请直接写出 BD 的长的取值范围.





25.对于平面内的图形 G_1 和图形 G_2 ,记平面内一点 P 到图形 G_1 上各点的最短距离为 d,点 P 到图形 G_2 上各点的最短距离为 d_2 若 $d_1=d_2$,就称点 P 是图形 G_1 和图形 G_2 的一个"等距点".

在平面直角坐标系 xOy 中,已知点 A (6, 0),B (0, $2\sqrt{3}$).

- (1) 在 R (3, 0), S (2, 0), T (1, $\sqrt{3}$) 三点中, 点 A 和点 B 的等距点是_____;
- (2) 已知直线 y = -2.
- ①若点 A 和直线 y=-2 的等距点在 x 轴上,则该等距点的坐标为 ;
- ②若直线 y=a 上存在点 A 和直线 y=-2 的等距点,求实数 a 的取值范围;
- (3)记直线 AB 为直线 l_1 ,直线 l_2 : $y = -\frac{\sqrt{3}}{3}x$,以原点 O 为圆心作半径为 r 的 $\odot O$.若 $\odot O$ 上有 m 个直线 l_1 和 直线 l_2 的等距点,以及 n 个直线 l_1 和 y 轴的等距点($m \neq 0$, $n \neq 0$),当 $m \neq n$ 时,求 r 的取值范围.

2021 北京西城初三(上)期末数学

参考答案

一、选择题(本题共24分,每小题3分)

题号	1	2	3	4	5	6	7	8
答案	D	В	В	D	С	В	C	A

二、填空题(本题共24分,每小题3分)

9. 2.
$$10. y=3x^2$$
. $11. \frac{2}{3}$ $12.>$, <, <. $13.1.$ $14. 2\sqrt{3}$.

15. OCE; 两组对边分别相等的四边形是平行四边形; $\frac{8}{5}$.

16. (1) 5 (1
$$\%$$
); (2) $\frac{4}{3}$ (2 $\%$).

三、解答题(本题共52分,第17、18、20~22题每小题5分,第19题6分,第23~25题每小题7分)

17.解: 2sin60°—tan45°+cos230°

$$=2\times\frac{\sqrt{3}}{2}-1+\left(\frac{\sqrt{3}}{2}\right)^2.....3$$

$$=\sqrt{3}-1+\frac{3}{4}$$

$$=\sqrt{3}-\frac{1}{4}.$$

=20-4k.

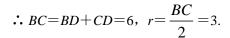
:: 方程有两个不相等的实数根。

(2) 当 k=1 时,原方程化为 $x^2+2x-3=0$.

(3) 点 A 在 ⊙ O 外.

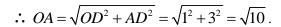
理由如下:连接 OA.

BD=4, CD=2,

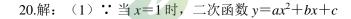


 $: AD \perp BC$

在 $Rt\triangle AOD$ 中, AD=3, OD=BD-OB=1,



- $\because \sqrt{10} > 3$,



(*a*≠0) 的最小值为一4,

- ∴ 二次函数的图象的顶点为(1, -4).
- :: 二次函数的解析式可设为

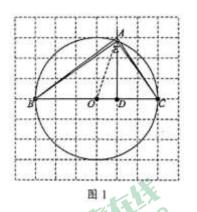
$$y=a(x-1)^2-4 \ (a\neq 0)$$
.

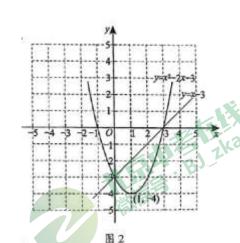
- · 二次函数的图象经过(3,0)点,
- $\therefore a(3-1)^2-4=0.$

解得 a=1.

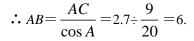
: 该二次函数的解析式为

- 21. (1) 证明: 如图 3, 连按 OC.
 - :: AB 为⊙O 的直径, AC 为弦,





- $\therefore \angle ACB = 90^{\circ}, \ \angle 1 + C2 = 90^{\circ}.$
- : OA = OC
- \therefore $\angle 2 = \angle A$.
- $\therefore \angle BCD = \angle A$,
- $\therefore \angle 2 = \angle BCD$.
- $\therefore \angle 1 + \angle BCD = 90^{\circ}.$
- $\therefore \angle OCD = 90^{\circ}.$
- ∵ oc 为⊙o 的半径,
- (2) $\text{M}: : \angle BCD = \angle A, \cos \angle BCD = \frac{9}{20}$
- $\therefore \cos A = \cos \angle BCD = \frac{9}{20}.$
- 在 $Rt\triangle ABC$ 中, $\angle ACB$ =90°, AC=2.7, $\cos A = \frac{9}{20}$.



$$\therefore OC = OE = \frac{AB}{2} = 3.$$

在 $Rt\triangle OCD$ 中, $\angle OCD$ =90°, OC=3, CD=4,

22.解: 如图 4.

- (2) 可得 DN = PM = 2x + 2.

$$S = DM \cdot DN = (4 - x)(2x + 2) = -2x^2 + 6x + 8$$

- (3) : 此拋物线开口向下,对称轴为 $x = \frac{3}{2}$,
- ∴ 当 $x < x = \frac{3}{2}$ 时, y 随 x 的增大而增大.

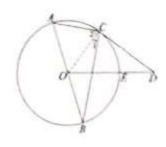


图 3

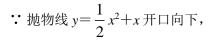
- x 的取值范围为 $0 \le x \le 1$,
- \therefore 当 x=1 时,矩形 PMDN 的面积最大,此时点 P 与点 E 重合,此时最大面积为

(2)
$$x_A - x_B = (3n+4) - (2n-1) = n+5$$
,

$$x_A - 1 = (3n + 4) - 1 = 3n + 3 = 3(n + 1),$$

$$x_{B}-1=(2n-1)-1=2n-2=2(n-1).$$

- ①当n < -5时, $x_A 1 < 0$, $x_B 1 < 0$, $x_A x_B < 0$.



- \therefore 在抛物线的对称轴 x=1 的左侧, y 随 x 的增大而增大.

AD = A'D.

证明如下:

如图 5, 过点 A 作 A C 的平行线, 交 CC 于点 E, 记 $\angle 1 = \beta$.

- : 将 $Rt \triangle ABC$ 绕点 B 顺时针旋转 α 得到 $Rt \triangle A'BC'$,
- $\therefore \angle A'C'B = \angle ACB = 90^{\circ}, A'C' = AC, BC' = BC.$
- $\therefore \angle 2 = \angle 1 = \beta$.
- $\therefore \angle 3 = \angle ACB \angle 1 = 90^{\circ} \beta, \ \angle A'C'D = \angle A'C'B + \angle 2 = 90^{\circ} + \beta.$
- ∴ *AE*//*A*′*C*′
- $\therefore \angle AED = \angle A'C'D = 90^{\circ} + \beta.$
- $\therefore \angle 4 = 180^{\circ} \angle AED = 180^{\circ} (90^{\circ} + \beta) = 90^{\circ} \beta.$
- ∴ ∠3=∠4.
- $\therefore AE = AC.$
- $\therefore AE = A'C'$.

在 $\triangle ADE$ 和 $\triangle A'DC'$ 中,

$$\begin{cases} \angle ADE = \angle A'DC', \\ \angle AED = \angle A'C'D, \\ AE = A'C', \end{cases}$$

证法不唯一

- ②如图 6,设直线 y=a 上的点 Q 为点 A 相直线 y=-2 的等距点,连接 QA,过点 Q 作直线 y=-2 的垂线,垂足为点 C.
- \therefore 点 Q 为点 A 和直线 y=-2 的等距点,

$$\therefore QA = QC$$
.

$$\therefore QA^2 = QC^2$$

∵点
$$Q$$
在直线 $y=a$ 上,

$$\therefore$$
 可设点 Q 的坐标为 $Q(x, a)$.

$$\therefore (x-6)^2 + a^2 = [a-(-2)]^2$$
.

整理得 $x^2-12x+32-4a=0$.

由题意得关于x的方程 $x^2-12x+32-4a=0$ 有实数根.

$$\therefore \triangle = (-12)^2 - 4 \times 1 \times (32 - 4a) = 16(a+1) \ge 0.$$

解得 a≥-1. 5 分

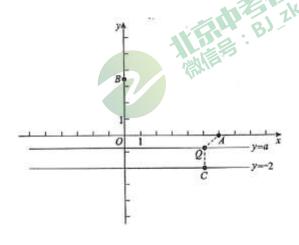


图 6

(3) 如图 7.

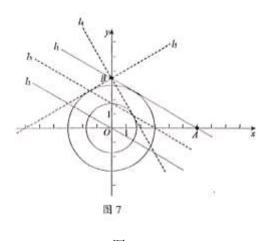


图 7

直线 l_1 和直线 l_2 的等距点在直线 l_3 : $y = -\frac{\sqrt{3}}{3}x + \sqrt{3}$ 上.

直线 l_1 和 y 轴的等距点在直线 l_4 : $y = -\sqrt{3}x + 2\sqrt{3}$ 或 l_5 : $y = -\frac{\sqrt{3}}{3}x + 2\sqrt{3}$ 上.

