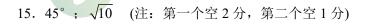
初三数学答案

一、选择题 (本题共24分,每小题3分)

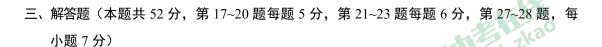
题号	1	2	3	4	5	6	7	8
答案	D	A	A	В	C	В	В	D

二、填空题(本题共24分,每小题3分)

- 9. 不唯一, 例如: $y = x^2$
- 10. >
- 11. 相切
- 12. 2
- 13. 0.9
- 14. 9



16. (1) 0; (2) <; >. (每空1分)



17. 解: 方法一:

$$x^2 - 4x + 4 - 1 = 0$$

$$(x-2)^2 = 1$$

$$x - 2 = \pm 1$$

$$x_1 = 1, x_2 = 3$$
.

方法二:

$$\Delta = b^2 - 4ac = (-4)^2 - 4 \times 3 = 4$$
.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{4 \pm 2}{2},$$

$$x_1 = 1, x_2 = 3$$
.

方法三:

$$(x-1)(x-3)=0$$

$$x-1=0$$
 或 $x-3=0$

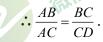
$$x_1 = 1, x_2 = 3$$
.

- 18. (1) 证明: *∵AC* 平分∠*BAD*,
 - $\therefore \angle BAC = \angle DAC.$
 - $\therefore \angle B = \angle ACD = 90^{\circ}$,
 - $\therefore \triangle ABC \hookrightarrow \triangle ACD.$
 - (2) 解: 在 Rt△*ABC* 中, ∠*B*=90°,

$$AB=4$$
, $AC=5$,

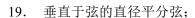
$$\therefore BC = \sqrt{AC^2 - AB^2} = 3$$

 $\therefore \triangle ABC \hookrightarrow \triangle ACD$,



$$\therefore \frac{4}{5} = \frac{3}{CD} ,$$

$$\therefore CD = \frac{15}{4}.$$



45;

$$(r-15);$$

$$45^2 + (r-15)^2$$
.

- 20. (1) m+n=14
 - (2) ①随机

②解: :盒中混入 1 支 'HB'铅笔的概率为
$$\frac{1}{4}$$
,

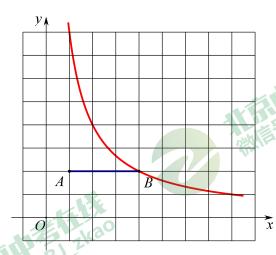
$$\therefore m = 20 \times \frac{1}{4} = 5.$$

$$: m+n=14$$
,

$$\therefore n=9$$
.

- 21. (1) : 点 B (4, 2) 在反比例函数 $y = \frac{k}{x}$ 的图象上,
- \therefore $k = 4 \times 2 = 8$,即该函数的解析式为 $y = \frac{8}{x} (x > 0)$.

如图



- (2) 若点 C 在反比例函数的图象上.
- (3) 0 < m ≤ $\frac{8}{7}$ 或 m ≥ 8
- 22. (1) 证明: 在⊙O中, 连接OE.
 - : 直线 AB 与⊙O 相切于点 E,
 - \therefore $OE \perp AB$.
 - ∵ *E* 是 *AB* 中点,
 - \therefore OA=OB.
 - (2) 解: ∵ *OA=OB*,
 - $\therefore \angle OAE = \angle B.$
 - *∴∠ACB*=90°,
 - ∴*AE*, *AC* 是 ⊙ *O* 的切线,
 - ∴ ∠*OAE*=∠*OAC*. (切线长定理)
 - $\therefore \angle OAE = \angle OAC = \angle B.$
 - $\therefore \angle OAE + \angle OAC + \angle B = 90^{\circ}$
 - ∴ ∠OAC=30°.

设 \odot *O* 的半径为 r,则 CD=2r

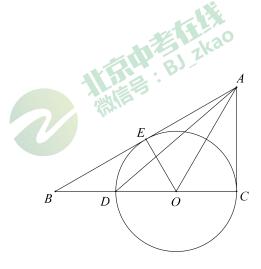
在 Rt $\triangle AOC$ 中, AO=2OC=2r.

$$\therefore AC = \sqrt{AO^2 - OC^2} = \sqrt{3}r.$$

在 Rt $\triangle ACD$ 中, $AC^2 + CD^2 = AD^2$, $AD = \sqrt{7}$,

∴
$$(\sqrt{3}r)^2 + (2r)^2 = 7$$
, 解得 $r = 1$.

∴ ⊙*0* 的半径为 1.



23. (1)

① : 二次函数 $y = x^2 + bx + c$ 的图象过点 (0, 4), (4, 4),

$$\therefore c = 4$$
, $16 + 4b + c = 4$.

- \therefore b = -4.
- ∴ 二次函数的解析式为 $y = x^2 4x + 4$.
- $\therefore y = (x-2)^2$,
- ∴ 该二次函数的顶点坐标为(2,0).
- ② $y_1 > y_2$, 理由如下:

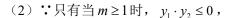
法 1: 将 x = m 分别代入二次函数和一次函数解析式,

得
$$y_1 = m^2 - 4m + 4$$
, $y_2 = -m + 4$.

$$y_1 - y_2 = m^2 - 3m = m(m-3)$$
.

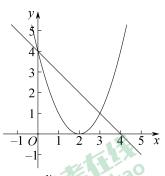
- m < 0,
- \therefore (m-3) < 0.
- $\therefore m(m-3) > 0.$
- $y_1 y_2 > 0$.
- $\therefore y_1 > y_2$.

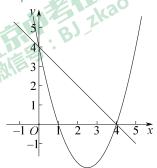
法 2: 在坐标系中画出这两个函数的图象,如右图,结合图象可得,当m < 0时, $y_1 > y_2$.



而点 $Q(m, y_2)$ 在一次函数 y = -x + 4 图象上,

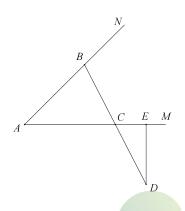
- ① 当m < 1时, $y_2 > 0$,而 $y_1 \cdot y_2 > 0$,因此 $y_1 > 0$;
- ② 当 $1 \le m < 4$ 时, $y_2 > 0$, 而 $y_1 \cdot y_2 \le 0$, 因此 $y_1 \le 0$;
- ③ 当m > 4时, $y_2 < 0$, 而 $y_1 \cdot y_2 \le 0$, 因此 $y_1 \ge 0$;
- :点 $P(m, y_1)$ 在二次函数 $y = x^2 + bx + c$ 的图象上,
- ∴ 当 m = 1 或 4 时, $y_1 = 0$.
- :: 平移后的二次函数解析式为 $y = (x-1)(x-4) = x^2 5x + 4$





24. (1) *AC*=*DE*;

(2) 补全图形,



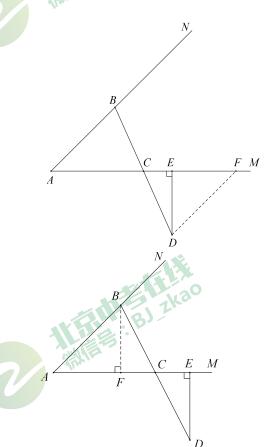
证明:

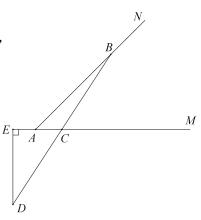
法 1: 在射线 AM 上取点 F, 使 AC=CF,

- \therefore AC=CF, BC=CD, \angle BCA= \angle DCF,
- $\therefore \triangle ABC \cong \triangle FDC.$
- \therefore $\angle DFE = \angle A = 45^{\circ}$.
- $: DE \perp AM$,
- $\therefore DE = EF$.
- $\therefore AF = AE + EF = 2AC$
- \therefore 2AC=AE+DE.

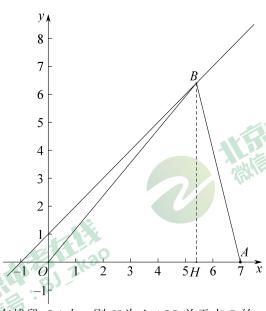
法 2: 作 $BF \perp AM$ 于点 F,

- : BF \perp AM, DE \perp AM,
- $\therefore \angle BFC = \angle DEC = 90^{\circ}$.
- $: CD = CB, \angle BCF = \angle DCE,$
- $\therefore \triangle BCF \cong \triangle DCE.$
- \therefore CF=CE, BF=DE.
- *∴* ∠*MAN*=45°,
- \therefore AF=BF=DE.
- *∴ AE+DE=AF+FE+DE=2(AF+FC)=2AC*. 结论得证.
- (3) 点 E 能在线段 AC 的反向延长线上,如图所示,此时 2AC+AE=DE.





② 过点 B 作 $BH \perp x$ 轴于点 H,如图,



根据定义,若点H在线段OA上,则H为 $\triangle AOB$ 关于点B的一个内联点;若点H不在线段OA上,则对于线段OA上任意一点Q,其关于BH的对称点Q'即为以B为圆心,BQ为半径的圆与直线AB的另一个交点,而点Q'不在线段OA上,此时 $\triangle AOB$ 关于点B的内联点不存在.

因此要满足题意, H 点必须在 OA 上.

∴点 B 的横坐标的取值范围是 $0 \le x_B \le 7$.

由于点 B 在直线 y = x + 1上,

所以点 B 的纵坐标 n 的取值范围是 $1 \le n \le 8$.

(2)
$$-\frac{2}{5}\sqrt{5} \le m \le 0$$
 $\vec{\boxtimes} \frac{2}{5}\sqrt{5} \le m \le \frac{8}{5}$.

