北京市平谷区 2020 年中考统一练习（二）
 数学试卷参考答案及评分标准 2020.6

一，选择题（本题共 16 分，每小题 2 分）

题号	1	2	3	4	5	6	7	8
答案	D	B	A	B	C	C	A	D

二，填空题（本题共 16 分，每小题 2 分）
9．$y(x+3)(x-3)$ ；
10． 45° ；
11． $\mathrm{x} \geq 1$

13．答案不唯一，如 $y=2 x+2$ ；
14．答案不唯一，如 $a=-1$ ；
15．$\left\{\begin{array}{l}x+y=4 \\ x-y=2\end{array}\right.$ ；或 $(x y=3)$
16．方案四．
三，解答题（本题共 68 分，第 1721 题，每小题 5 分，第 22－27题，每小题 6 分，第 28
题
7 分）解答应写出文字说䐓，演算步骤或证明过程．
17．解：原式 $=2 \times \frac{\sqrt{3}}{2}-1+2-2 \sqrt{3}$

$$
=1-\sqrt{3} \text {. }
$$

18．解：由（1）得 $2 x-6<x-4$

41100	
$x>-1$	．．．．．．．．．
$\therefore-1<x<2$	$\cdots 5$

19．（1）补全图形； \qquad .. .2
（2）
证明：连接 BP
$\because A B=B C$
 ， ．． 3

又 $\because O B=O P$ ，
$\therefore \angle \mathrm{APB}=\angle \underline{\mathrm{BP}}$ ，

$\therefore \angle \mathrm{CPB}=\angle 0 \mathrm{BP}$ ，
$\therefore C P / / l$（——内错角相等两直线平行） ．． 5

20．解：（1）$\Delta=(k-1)^{2}-4(\mathrm{k}-2)$

$$
\begin{aligned}
& =\mathrm{k}^{2}-6 \mathrm{k}+9 \\
& =(\mathrm{k}-3)^{2} \\
& \because \Delta \geq 0
\end{aligned}
$$

\therefore 方程总有两个不相等的实数根
（2）当 $\mathrm{k}=2$
$\therefore \mathrm{x}^{2}+\mathrm{x}=0$
4

解得 $\mathrm{x}_{1}=0, \mathrm{x}_{2}=-1$ 。
（其他取法相应给分）
21．（1）证明：\because 四边形 ABCD 是菱形

$$
\begin{aligned}
& \therefore \angle 1=\angle 2, A D=A B . \\
& \because \mathrm{BC}=\mathrm{DF} \\
& \therefore \mathrm{AE}=\mathrm{AF} \\
& \therefore \mathrm{AG} \perp \mathrm{EF}
\end{aligned}
$$

（2）证明：\because 菱形 $A B C D$

$\therefore \angle \mathrm{BOG}=\angle \mathrm{OGM}=\angle \mathrm{GMB}=90$
\therefore 四边形 OBMG 是矩形 ．． 3
$\because C$ 为 $A G$ 中点，

$$
\therefore \frac{\mathrm{AO}}{\mathrm{AG}}=\frac{\mathrm{BO}}{\mathrm{EG}}=\frac{1}{4}
$$

$\because B D=2$
$\therefore G E=4$.4
$\because \mathrm{GM}=\mathrm{OB}=1$
$\therefore \mathrm{ME}=3$

22．（1）证明：

$$
\begin{aligned}
\because & \text { 半径 } \mathrm{OD} \perp \mathrm{AE} \\
& \therefore \angle 1=90^{\circ} \ldots \ldots \ldots . ~
\end{aligned} 1
$$

$\because 0 \mathrm{D}=0 \mathrm{~B}$ ，
$\therefore \angle 5=\angle \mathrm{D}$
$\therefore \angle 4+\angle 5=90^{\circ}$
$\therefore \angle \mathrm{ABC}=90^{\circ}$
$\therefore \mathrm{BC}$ 与 $\odot O$ 相切． \qquad
（2）解：$\because \angle 1=90^{\circ}$ ，半径为 $5, \tan A=\frac{3}{4}$
$\therefore O G=3, A G=4$
$\because \angle 1=\angle \mathrm{ABC}=90^{\circ}, \angle \mathrm{A}=\angle \mathrm{A}$
$\therefore \triangle \mathrm{AGO} \sim \triangle \mathrm{ABC}$ ．． 3
$\therefore \frac{\mathrm{OG}}{\mathrm{BC}}=\frac{\mathrm{AO}}{\mathrm{AC}}=\frac{\mathrm{AG}}{\mathrm{AB}}$

$\therefore \mathrm{FC}=\frac{15}{2}$
$\therefore \mathrm{GF}=1$

23．（1） $\mathrm{B}(2,2)$
$\mathrm{k}=4$
（点 B 坐标不写不扣分）
（2）如图，D（4，1） ． 3代入得，$b=-3$ ．． 4

（3）$b>3$ $\cdot 6$

24．（1）$a=12, b=0.32$ ．

Abstract

（2）略

（3） 23
（4） $500 \times 0.32=160$（人）
（计算过程没写不扣分）
25．解：（1）2．33（2．0－2．5 之间均给分）
（2）

26．（1）

（2）${ }^{11} 1$ 个 3
（2）当抛物线顶点为 $(1,-2)$ 时，$m=1$当抛物线顶点为 $(1,-3)$ 时，$m=2$所以， $1<\mathrm{m} \leq 2$

27．（1）补全图形 \qquad
（2） 60° \qquad .2

（3）当 $\angle \mathrm{AMD}=75^{\circ}$ 时结论成立．

证明：想法一：
过 A 作 $\mathrm{AE} \perp \mathrm{CD}$ 于 E 。
$\because \angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{E}=90^{\circ}$
$\mathrm{AB}=\mathrm{BC}$
\therefore 四边形 ABCE 是正方形
．．．．．．．．． ．． 4
$\therefore \mathrm{AB}=\mathrm{AE}, \angle \mathrm{B}=\angle \mathrm{E}$,
$\mathrm{BC}=\mathrm{CE}$
$\because M C=D C$
$\therefore \mathrm{BM}=\mathrm{DE}$
$\therefore \triangle \mathrm{ABM} \cong \triangle \mathrm{AED}$ ．． 5
$\therefore \mathrm{AD}=\mathrm{AM}$
$\because \angle \mathrm{AMD}=75^{\circ}$
$\therefore \triangle \mathrm{AMD}$ 是等边三角形
$\therefore \mathrm{AM}=\mathrm{DM}$

（其他证明方法类似给分，辅助线正确写出一个正确语句即给 1 分，证完全等 2 分，完全正确 3 分）

28．（1）补全图形

（2）（1）$P(0,2 \sqrt{3})$ 或 $(0,0)$

