数学

\qquad
1．本试卷共 6 页，共三道大题， 26 道小题。满分 100 分。考试时间 90 分钟。
2．在试卷上准确填写学校名称，班级名称，姓名。
3．答案一律填涂或书写在试卷上，用黑色字迹签字笔作答。
4．考试结束，请将本试卷交回。

一，选择题（本题共 30 分，每小题 3 分）．

1．-5 的倒数是
A．$-\frac{1}{5}$
B．$\frac{1}{5}$
C．-5
D． 5

2．＂霜降见霜，谷米满仓＂，2023年我国粮食再获丰收。据统计，去年秋粮的种植面积为 13.1 亿亩，比前年增加了 700 多万亩，奠定了增产的基础。将 13100000000 用科学记数法表示应为
A． 13.1×10^{8}
B． 1.31×10^{9}
C． 1.31×10^{10}
D． 0.131×10^{11}

3．下列各组有理数的大小关系中，正确的是
A． $1<-2$
B．$-3<4$
C．$-5<-6$
D． $0<-1$

4．方程 $-2 x=1$ 的解是
A．$-\frac{1}{2}$
B．$\frac{1}{2}$
C．-2
D． 2

5．下列运算结果正确的是
A． $3 b-b=3$
B．$-5 m+2 m=-3 m$
C．$x^{2} y-x y^{2}=0$
D．$x^{3}+2 x^{2}=3 x^{5}$

6．若 $3 a=2 b+4$ ，则下列等式不一定成立的是
A． $3 a-4=2 b$
B． $3 a+1=2 b+5$
C． $3 a c=2 b c+4$
D．$a=\frac{2}{3} b+\frac{4}{3}$

7．如图，D 是线段 $A B$ 的中点，C 是线段 $A D$ 的中点，若 $A B=4 a \mathrm{~cm}$ ，则线段 $C B$ 的长度为
A． $2 a \mathrm{~cm}$
B． $2.5 a \mathrm{~cm}$
C． $3 a \mathrm{~cm}$
D． $3.5 a \mathrm{~cm}$

8．已知有理数 x, y 在数轴上对应点的位置如图所示，那么下列结论正确的是
A．$-x<2$
B．$|x|<|y|$
C．$x y>0$
D．$x+y>-3$

9．如图，在正方形网格中有 A, B 两点，点 C 在点 A 的南偏东 60° 方向上，且点 C 在点 B 的东北方向上，则点 C 可能的位置是图中的

A．点 C_{1} 处
B．点 C_{2} 处
C．点 C_{3} 处

D．点 C_{4} 处
10．某玩具厂在生产配件时，需要分别从棱长为 $2 a$ 的正方体木块中，挖去一个棱长为 a 的小正方体木块，得到甲，乙，丙三种型号的玩具配件（如图所示）。将甲，乙，丙这三种配件的表面积分别记为 $S_{\text {甲，}} S_{\text {乙，}} S_{\text {丙，则下列大小关系正确的是 }}$

注：几何体的表面积是指几何体所有表面的面积之和．

A．$S_{\text {甲 }}>S_{\text {乙 }}>S_{\text {丙 }}$
B．$S_{\text {甲 }}>S_{\text {丙 }}>S_{\text {乙 }}$
C．$S_{\text {丙 }}>S_{\text {乙 }}>S_{\text {甲 }}$
D．$S_{\text {丙 }}>S_{\text {甲 }}>S_{\text {乙 }}$

甲

乙

丙

二，填空题（本题共 18 分，每小题 3 分）

11．如果单项式 $-3 x^{a} y^{4}$ 与 $5 x^{3} y^{b}$ 是同类项，那么 $a-b=$ \qquad ．

12．若关于 x 的一元一次方程 $2 x+m=0$ 的解为正数，则 m 的一个取值可以为 \qquad ．

13．小明一家准备自驾去居庸关长城游玩。出发前，爸爸用地图软件查到导航路程为 45.7 km ，小明用地图软件中的测距功能测出他家和目的地之间的距离为 41.4 km ，如图所示，小明发现他测得的距离比爸爸查到的导航路程少．请你用所学数学知识说明其中的道理：

14．有这样一个问题：把一些图书分给某班学生阅读，如果每人分 3 本，则剩余 18 本，如果每人分 4 本，则还缺 22 本．这个班有多少学生？设这个班有 x 名学生，则可列方程为 \qquad （只列不解）。

15．如图所示的网格是正方形网格，则 $\angle A B C$ \qquad $\angle D E F$ ．（填＂＞＂＂＜＂或＂＝＂）

16．记 $2 x-1$ 为 $M, 3 x-2$ 为 N ．我们知道，当这两个代数式中的 x 取某一确定的有理数时，M 和 N 的值也随之确定，例如当 $x=2$ 时，$M=2 x-1=3$ ．若 x 和 M, N 的值如下表所示．

x 的值	2	c
M 的值	3	b
N 的值	a	b

则 a 和 c 的值分别是：
（1）$a=$ \qquad ；
（2）$c=$ \qquad ．

三，解答题（本题共 52 分，第 17－18 题，每小题 7 分，第 19－22题，每小题 4 分，第 23－24 题，每小题 5 分，第25－26题，每小题 6 分）

解答应写出文字说明，演算步骤或证明过程。
17．计算：
（1） $3 \times(-2)-(-5)+8$ ；
（2） $12 \times\left(-\frac{1}{2}\right)^{2}+(-6) \div|-3|$ ．

18．解下列方程：
（1）$x+7=3(x-1)$ ；
（2）$\frac{x-1}{3}=\frac{5-x}{6}-2$ ．

19．已知 $a-b=3$ ，求 $3(a-b)+4 a-4 b+18$ 的值．

20．如图，已知 $\angle M O N$ ，点 A 在射线 $O M$ 上．
（1）请按照下列步骤画图（保留作图痕迹）．
（1）用圆规在射线 $O N$ 上取一点 B ，使 $O B=O A$ ；
（2）在 $\angle M O N$ 内部作射线 $O P$ ，使 $\angle B O P>\angle A O P$ ；
（3）在射线 $O P$ 上取一点 C（不与点 O 重合），连接 $C A, C B$ ；

（2）由图可知，$C A$ \qquad $C B($ 填＂＞＂＂＜＂或＂＝＂）．

21．如图，$O C, O D$ 是 $\angle A O B$ 内部的两条射线，$\angle A O C=20^{\circ}, \angle B O D=2 \angle C O D, \angle A O D$ 与 $\angle B O C$ 互为补角，求 $\angle C O D$ 的度数．

22．如图，点 C, D 在线段 $A B$ 上，$A B=12, A C=2, D$ 为线段 $B C$ 的中点．
（1）求线段 $C D$ 的长；
（2）若 E 是直线 $A B$ 上一点，且 $A E=C D$ ，求线段 $E B$ 的长．

23．故宫文物医院（故宫博物院文保科技部）传承了历史悠久的传统文物修复技艺，掌握了先进的现代科学技术，拥有上百位从事各类文物保护修复与研究的优秀专业技术人才，是一所名副其实的，有现代科学理念和架构的＂文物综合性医院＂。半个多世纪以来，许多国宝在这里得以延年益寿．文物修复师们计划用 30 个月完成某件文物的修复工作。如果让一名文物修复师单独修复该文物，需要 720 个月完成．假设每名文物修复师的工作效率相同，先由 16 名文物修复师一起修复了 10 个月，还需要增加多少名文物修复师才能按时完成修复工作？

24．定义一种新运算＂$\&$＂：当 $x>y$ 时，$x \& y=x+\frac{y}{2}$ ；当 $x=y$ 时，$x \& y=x+y$ ；当 $x<y$ 时，$x \& y=\frac{x}{2}+y$ ．例如： $2 \& 1=\frac{5}{2}$ ．
（1）直接写出 $(-1) \& 7=$ \qquad ；
（2）已知 $2 \& x=\frac{5 x+2}{3}$ ，求 x 的值；
（3）若关于 x 的方程 $a \&(x+1)=a^{2}-\frac{3 a}{2}+4$ 的解为 $x=a^{2}$ ，则 a 的值为 \qquad ．

25．已知 $\angle A O B=\alpha\left(0^{\circ}<\alpha<180^{\circ}\right.$ ，且 $\left.\alpha \neq 120^{\circ}\right), \angle B O C=\frac{\alpha}{2}, O M$ 平分 $\angle A O C, O N$ 平分 $\angle B O C$ ．
（1）当射线 $O C$ 在 $\angle A O B$ 的内部时．
（1）若 $\alpha=30^{\circ}$ ，则 $\angle M O N=$ \qquad ；
（2）猜想 $\angle M O N$ 与 $\angle B O C$ 之间的数量关系为： \qquad ；
（2）当射线 $O C$ 在 $\angle A O B$ 的外部时，画出图形，并求 $\angle M O N$ 的大小（用含 α 的式子表示）．

26．在数轴上，把原点记作点 O ，点 A 和点 B 分别表示的数为 $a, b(a>b)$ ，我们称关于 x 的元一次方程 $a x+b=a b$ 为线段 $A B$ 的相关方程，将方程 $a x+b=a b$ 的解记为 $x=c, c$ 在数轴上对应的点为 C ，若点 C 在线段 $A B$ 上，则称线段 $A B$ 为美好线段，C 为线段 $A B$ 的美好点．
（1）若 $a=2, b=-1$ ，则线段 $A B$ 的相关方程为 \qquad ；线段 $A B$ 是否是美好线段： \qquad （填＂是＂或＂否＂）；
（2）已知 $a=0.5$ ，若线段 $A B$ 的美好点恰好是线段 $A B$ 的中点，求点 C 表示的数；
（3）已知数组 $M:-\frac{2023}{100},-\frac{2022}{100}, \cdots,-\frac{1}{100}, 0, \frac{1}{100}, \frac{2}{100}, \frac{3}{100}, \cdots, \frac{2023}{100}$ ，一共有 4047 个数，数组 $N:-10,-1,0,1,2,3,4,5,6,7$ ，一共有 10 个数．有理数 a是数组 M 中的一个数，有理数 b 是数组 N 中的一个数，若线段 $A B$ 为美好线段，且线段 $A B$ 的美好点在数轴的正半轴上，则这样的美好点一共有 \qquad个。

七年级练习数学

参考答案

一，选择题

题目	1	2	3	4	5	6	7	8	9	10
答案	A	B	B	A	B	C	C	D	B	D

二，填空题

11．-1
12．答案不唯一，m 为负数即可
13．两点之间，线段最短
14． $3 x+18=4 x-22$
15．$>$
16．4； 1

说明：第 14 题写出方程的解也给 3 分；第 16 题第一空 1 分，第二空 2 分．

三，解答题

17．解：（1） $3 \times(-2)-(-5)+8$
$=-6+5+8$
$=7$
（2） $12 \times\left(-\frac{1}{2}\right)^{2}+(-6) \div|-3|$
$=12 \times \frac{1}{4}+(-6) \div 3$
$=3+(-2)$
$=1$
18．解：（1）原方程可化为：
$x+7=3 x-3$
$10=2 x$
2 分
$x=5$
（2）原方程可化为：
$2(x-1)=5-x-12$

$x=-\frac{5}{3}$
.4 分

19．解： $3(a-b)+4 a-4 b+18$
$=3(a-b)+4(a-b)+18$
$=7(a-b)+18$
因为 $a-b=3$ ，
所以 $7(a-b)+18=21+18=39$ ．
即 $3(a-b)+4 a-4 b+18=39$ ．
20．解：（1）作图如图所示：

作出符合条件的射线 $O P$ ；
作出点 C ，并连接 $C A, C B$ ；
（2）$<$
21．解：
因为 $\angle A O D$ 与 $\angle B O C$ 互为补角，
所以 $\angle A O D+\angle B O C=180^{\circ}$ ．
因为 $\angle A O D=\angle A O C+\angle C O D, \angle B O C=\angle B O D+\angle C O D$ ，
所以 $\angle A O C+\angle C O D+\angle B O D+\angle C O D=180^{\circ}$ ．
因为 $\angle A O C=20^{\circ}, \angle B O D=2 \angle C O D$ ，
所以 $20^{\circ}+4 \angle C O D=180^{\circ}$ ．
所以 $\angle C O D=40^{\circ}$ ．
答：$\angle C O D$ 的度数为 40° 。

22．解：（1）由图可知 $A B=A C+C B$ ．
因为 $A B=12, A C=2$ ，
所以 $C B=A B-A C=12-2=10$ ．
因为 D 为线段 $B C$ 的中点，
所以 $C D=\frac{1}{2} C B=\frac{1}{2} \times 10=5$ ．
（2）当 E 在点 A 右侧时，如图（1）．

因为 $A E=C D=5$ ，且 $A B=12$ ，
所以 $E B=A B-A E=12-5=7$ ．
当 E 在点 A 左侧时，如图（2）．

图（2）

因为 $A E=C D=5$ ，且 $A B=12$ ，
所以 $E B=E A+A B=12+5=17$ ．
综上所述，$E B$ 的长为 7 或 17 。
23．解：设还需要增加 x 名文物修复师才能按时完成修复工作．
依题意列方程，得 $\frac{10 \times 16}{720}+\frac{20(16+x)}{720}=1$ 。
解得 $x=12$ ．
答：还需要增加 12 名文物修复师才能按时完成修复工作．
24．解：（1）$\frac{13}{2}$ ．
因为 $-1<7$ ，所以 $(-1) \& 7=-\frac{1}{2}+7=\frac{13}{2}$ ．
（2）若 $x>2,2 \& x=x+1$ ，于是 $x+1=\frac{5 x+2}{3}$ ，解得 $x=\frac{1}{2}$ ，舍；
若 $x=2,2 \& x=x+2$ ，于是 $x+2=\frac{5 x+2}{3}$ ，解得 $x=2$ ，成立；
若 $x<2,2 \& x=2+\frac{x}{2}$ ，于是 $2+\frac{x}{2}=\frac{5 x+2}{3}$ ，解得 $x=\frac{8}{7}$ ，成立
所以 x 的值为 2 或 $\frac{8}{7}$ ．
（3）$\frac{3}{2}$ ．
25．解：（1）（1） 15 ；
（2）$\angle M O N=\angle B O C$ ；
（2）解：当 $0^{\circ}<\alpha<120^{\circ}$ 时，如图1．
因为 $\angle A O B=\alpha, \angle B O C=\frac{\alpha}{2}$ ，
所以 $\angle A O C=\angle A O B+\angle B O C=\alpha+\frac{\alpha}{2}=\frac{3}{2} \alpha$ ．
因为 $O M$ 平分 $\angle A O C$ ，
所以 $\angle M O C=\frac{1}{2} \angle A O C=\frac{3}{4} \alpha$ ．

图 1

因为 $O N$ 平分 $\angle B O C$ ，
所以 $\angle N O C=\frac{1}{2} \angle B O C=\frac{1}{4} \alpha$ ．
（说明：两次角平分线用对一次可给 1 分）
所以 $\angle M O N=\angle M O C-\angle N O C=\frac{3}{4} \alpha-\frac{1}{4} \alpha=\frac{1}{2} \alpha$ ．
当 $120^{\circ}<\alpha<180^{\circ}$ 时，如图2．
因为 $\angle A O B=\alpha, \angle B O C=\frac{\alpha}{2}$ ，
所以 $\angle A O C=360^{\circ}-(\angle A O B+\angle B O C)=360^{\circ}-\frac{3}{2} \alpha$ ．
因为 $O M$ 平分 $\angle A O C$ ，
所以 $\angle M O C=\frac{1}{2} \angle A O C=180^{\circ}-\frac{3}{4} \alpha$ ．
因为 $O N$ 平分 $\angle B O C$ ，

图2

所以 $\angle N O C=\frac{1}{2} \angle B O C=\frac{1}{4} \alpha$ ．
（说明：两次角平分线用对一次可给 1 分）
所以 $\angle M O N=\angle M O C+\angle N O C=180^{\circ}-\frac{1}{2} \alpha$ ．
综上所述，$\angle M O N=\alpha$ 或 $\angle M O N=180^{\circ}-\frac{1}{2} \alpha$ ．
26．（1） $2 x-1=-2$ ；是．
（2）因为点 A 和点 B 分别表示的数为 a, b ，
所以线段 $A B$ 的中点表示的数为 $c=\frac{a+b}{2}$ ．

因为 $a=0.5$ ，所以 $c=\frac{0.5+b}{2}$ ．
因为线段 $A B$ 的美好点恰好是线段 $A B$ 的中点，
所以代入方程 $a x+b=a b$ 得： $0.5 \times \frac{0.5+b}{2}+b=0.5 b$ ．$\quad \ldots . \ldots \ldots$ 分
解得：$b=-\frac{1}{6}$ ．
所以 $c=\frac{0.5+b}{2}=\frac{1}{6}$ ．
（3） 46 ．

