2023 北京大兴初三一模

学 数

2023. 5

本试卷共8页,共三道大题,28道小题,满分100分,考试时间120分钟。

在答题纸上准确填写学校名称、准考证号,并将条形码贴在指定区域。

题目答案一律填涂或书写在答题卡上,在练习卷上作答无效。

知

4. 在答题纸上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。

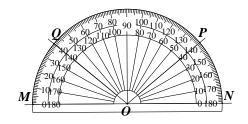
5. 练习结束,请将答题纸交回。

一、选择题(本题共16分,每小题2分)

第1-8题均有四个选项,符合题意的选项只有一个.

1. 如图所示的圆柱,其俯视图是

- 2. 2022年10月12日, "天宫课堂"第三课在距离地球约400000米的中国空间站开讲,数据400000用科 学记数法表示为
- A. 40×10^4 B. 4×10^5 C. 4×10^6 D. 0.4×10^6
- 3. 已知 M, N, P, Q四点的位置如图所示,下列结论正确的是

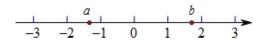


A. $\angle NOQ = 40^{\circ}$

B. $\angle NOP = 140^{\circ}$

C. ∠NOP 比∠MOQ 大

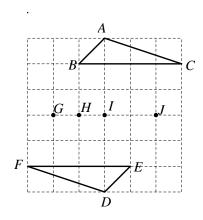
- D. ∠MOQ与∠MOP互补
- 4. 实数 a, b 在数轴上的对应点的位置如图所示,下列结论中正确的是



- A. a < -2 B. b > 2 C. b a < 0 D. a > -b
- 5. 一个不透明的口袋中有三个完全相同的小球,把它们分别标号为 1,2,3,随机摸出一个小球然后放回, 再随机摸出一个小球, 求两次摸出小球的标号相同的概率是

- A. $\frac{1}{3}$ B. $\frac{2}{3}$ C. $\frac{1}{9}$ D. $\frac{2}{9}$

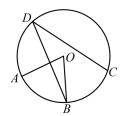
- 6. 若关于x的一元二次方程 $x^2+2x+m=0$ 有实数根,则实数m的取值范围为
- A. m < 1 B. $m \le 1$ C. m > 1 D. $m \ge 1$
- 7. 如图,在正方形网格中, A, B, C, D, E, F, G, H, I, J 是网格线交点, $\triangle ABC$ 与 $\triangle DEF$ 关于某点 成中心对称,则其对称中心是



- A. 点 G
- B. 点*H*
- C. 点I D. 点J
- 8. 下面的三个问题中都有两个变量:
- ①面积一定的等腰三角形,底边上的高y与底边长x;
- ②将泳池中的水匀速放出,直至放完,泳池中的剩余水量y与放水时间x;
- ③计划从 A 地到 B 地铺设一段铁轨,每日铺设长度 v 与铺设天数 x.

其中,变量v与变量x满足反比例函数关系的是

- A. ①②
- B. (1)(3)
- C. 23
- D. (1)(2)(3)
- 二、填空题(本题共16分,每小题2分)
- 9. 若 $\sqrt{x-1}$ 在实数范围内有意义,则实数 x 的取值范围是
- 10. 分解因式: $3m^2 + 6m + 3 =$.
- 11. $f_{r-3} = \frac{2}{r} \text{ of } mhh$ _____.
- 12. 在平面直角坐标系 xOy 中,若反比例函数 $y = \frac{k}{x} (k \neq 0)$ 的图象经过点 A(2,3) 和点 B(-2, m),则 m 的值 为
- 13. 九年级(1) 班同学分6个小组参加植树活动,此活动6个小组的植树棵数的数据如下:5,7,3,x,
- 6,4(单位:株). 若这组数据的众数是5,则该组数据的平均数是____.
- 14. 如图, A, B, C, D是 $\odot O$ 上的四个点, AB = BC, 若 $\angle AOB = 68^{\circ}$, 则 $\angle BDC =$ \circ .



第14题图

第15题图

- 15. 如图, 在矩形 ABCD 中, E 是 AD 边上一点, 且 AE=2DE, 连接 CE 交对角线 BD 于点 F. 若 BD=10, 则 DF的长为 .
- 16. 某校需要更换部分体育器材,打算用 1800 元购买足球和篮球,并且把 1800 元全部花完. 已知每个足 球 60 元,每个篮球 120 元,根据需要,购买的足球数要超过篮球数,并且足球数不超过篮球数的 2 倍,写 出一种满足条件的购买方案
- 三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7 分)

解答应写出文字说明、演算步骤或证明过程.

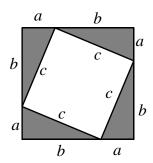
- 17. 计算: $2\sin 60^{\circ} \sqrt{12} + \left| -\sqrt{3} \right| + (\pi 1)^{0}$
- 18. 解不等式组: $\begin{cases} x+3(x-2) \ge 4, \\ \frac{x-1}{2} < x+1. \end{cases}$
- 19. 已知 $x^2 + x 1 = 0$,求代数式(2x + 1)(2x 1) x(x 3)的值.
- 20. 下面是用面积关系证明勾股定理的两种拼接图形的方法,请选择其中一种,完成证明.

勾股定理: 在直角三角形中,两直角边的平方和等于斜边的平方.

已知:如图,直角三角形的直角边长分别为a,b,斜边长为c. 求证: $a^2 + b^2 = c^2$.

方法一

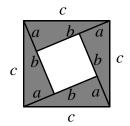
如图,大正方形的边长为(a+b),小正方形 的边长为c.



证明:

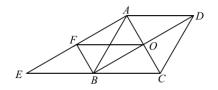
方法二

如图,大正方形的边长为 c,小正方形的边长 为 (b-a).

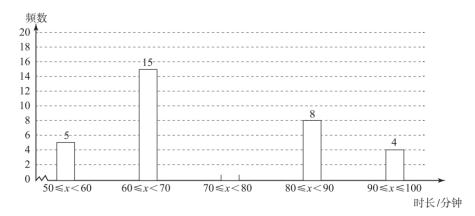


证明:

21. 如图,在菱形 ABCD 中,对角线 AC、BD 的交于点 O,延长 CB 到 E,使得 BE=BC.连接 AE.过点 B 作 BF//AC,交 AE 于点 F,连接 OF.



- (1) 求证: 四边形 AFBO 是矩形;
- (2) 若∠ABC=60°, BF=1, 求 OF 的长.
- 22. 在平面直角坐标系 xOy 中,函数 $y = kx + b(k \neq 0)$ 的图象经过点(1,1),(2,3).
- (1) 求该函数的解析式;
- (2) 当 x > -1 时,对于 x 的每一个值,函数 $y = mx(m \neq 0)$ 的值大于一次函数 $y = kx + b(k \neq 0)$ 的值,直接写出 m 的取值范围.
- 23. 某校为了解九年级学生周末家务劳动时长的情况,随机抽取了50名学生,调查了这些学生某一周末家务劳动时长(单位:分钟)的数据,并对数据(保留整数)进行整理、描述和分析,下面给出部分信息:
- a. 学生家务劳动时长的数据在 70 ≤ x < 80 这一组的具体数据如下:
- 72, 72, 73, 74, 74, 75, 75, 75, 75, 75, 75, 76, 76, 76, 77, 77, 78, 79
- b. 学生家务劳动时长的数据的频数分布直方图如下:

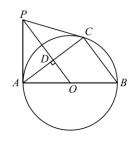


根据以上信息,回答下列问题:

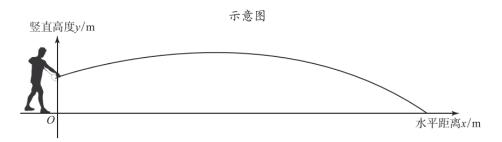
- (1) 补全频数分布直方图;
- (2) 学生家务劳动时长的数据的中位数为____;
- (3) 若该校九年级有学生500人,估计该校九年级学生家务劳动时长至少90分钟的

有____人.

- 24. 如图,AB 是 \odot O 的直径,C 为圆上一点,连接 AC,BC,过点 O 作 $OD \bot AC$ 于点 D. 过点 A 作 \odot O 的 的切线交 OD 的延长线于点 P,连接 CP.
- (1) 求证: *CP* 是 ⊙ *O* 的切线;
- (2) 过点 B作 $BE \perp PC$ 于点 E,若 CE=4, $\cos \angle CAB=\frac{4}{5}$,求 OD 的长.



25. 羽毛球作为国际球类竞技比赛的一种,发球后羽毛球的飞行路线可以看作是抛物线的一部分. 建立如图所示的平面直角坐标系,羽毛球从发出到落地的过程中竖直高度 y (单位: m) 与水平距离 x (单位: m) 近似满足函数关系式: $y = a(x - h)^2 + k(a \neq 0)$.



某次发球时,羽毛球的水平距离x与竖直高度y的几组数据如下:

水平距离 x/m	0	2	4	6	8	
竖直高度 y/m	1	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{3}{2}$	1	

请根据上述数据,解决问题

(1) 直接写出羽毛球飞行过程中竖直高度的最大值,并求出满足的函数关系

 $y = a(x-h)^2 + k(a \neq 0)$;

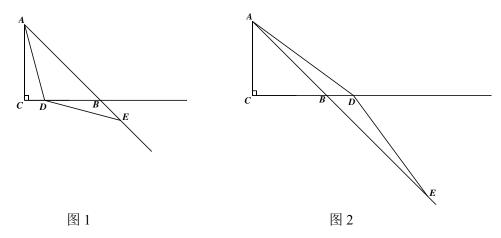
(2) 已知羽毛球场的球网高度为 1.55m,当发球点 O 距离球网 5m 时羽毛球______(填"能"或"不能") 越过球网.

26. 在平面直角坐标系 xOy 中,点 $\left(-2,\ y_{1}\right)$, $\left(2,\ y_{2}\right)$, $\left(3,\ y_{3}\right)$ 在抛物线 $y=x^{2}-2tx+t^{2}+1$ 上.

- (1) 抛物线的对称轴是直线____ (用含t的式子表示);
- (2) 当 $y_1 = y_2$, 求t的值;
- (3) 点 $(m, y_3)(m \neq 3)$ 在抛物线上,若 $y_2 < y_3 < y_1$,求 t 取值范围及 m 的取值范围.

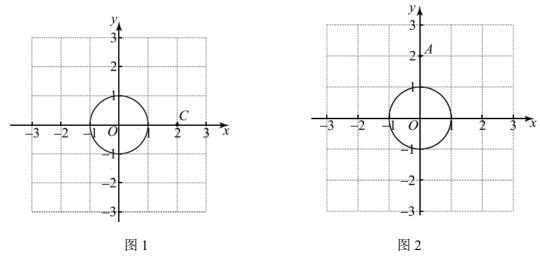
27. 在 $\triangle ABC$ 中,AC=BC, $\angle C=90^\circ$,点 D 为射线 CB 上一动点(不与 B,C 重合),连接 AD,点 E 为 AB 延长线上一点,且 DE=AD,作点 E 关于射线 CB 的对称点 F,连接 BF,DF.

- (1) 如图 1, 当点 D 在线段 CB 上时,
- ①依题意补全图形, 求证: ∠DAB=∠DFB;
- ②用等式表示线段 BD, BF, BC 之间的数量关系, 并证明;
- (2) 如图 2, 当点 D 在线段 CB 的延长线上时,请直接用等式表示线段 BD, BF, BC 之间的数量关系.

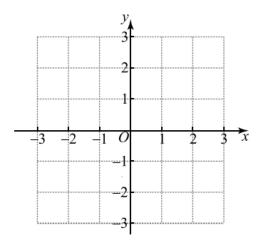


- 28. 在平面直角坐标系 xOy 中,对于 $\triangle ABC$ 与 $\bigcirc O$,给出如下定义:若 $\triangle ABC$ 的一个顶点在 $\bigcirc O$ 上,除这个顶点外 $\triangle ABC$ 与 $\bigcirc O$ 存在且仅存在一个公共点,则称 $\triangle ABC$ 为 $\bigcirc O$ 的"相关三角形".
- (1) 如图 1, $\bigcirc O$ 的半径为 1, 点 C (2, 0), $\triangle AOC$ 为 $\bigcirc O$ 的 "相关三角形".

在点 P_1 (0, 1), P_2 , ($\frac{1}{2}$, $\frac{\sqrt{3}}{2}$) P_3 (1, 1) 这三个点中,点 A 可以与点____重合;



- (2) 如图 2, \bigcirc O 的半径为 1,点 A (0, 2),点 B 是 x 轴上的一动点,且点 B 的横坐标 x_B 的取值范围是— $1 < x_B < 1$,点 C 在第一象限,若 $\triangle ABC$ 为直角三角形,且 $\triangle ABC$ 为 \bigcirc O 的 "相关三角形". 求点 C 的横坐标 x_C 的取值范围;
- (3) $\odot O$ 的半径为 r,直线 $y = -\sqrt{3}x + \sqrt{3}$ 与 $\odot O$ 在第一象限的交点为 A,点 C (2, 0),若平面直角坐标系 xOy 中存在点 B (点 B 在 x 轴下方),使得 $\triangle ABC$ 为等腰直角三角形,且 $\triangle ABC$ 为 $\odot O$ 的 "相关三角形".直接写出 r 的取值范围.



备用图

参考答案

一、选择题(本题共16分,每小题2分)

题号	1	2	3	4	5	6	7	8
答案	A	В	D	D	A	В	С	В

二、填空题(本题共16分,每小题2分)

9.
$$x \ge 1$$

10.
$$3(m+1)^2$$

11.
$$x = 6$$

12.
$$-3$$

15.
$$\frac{5}{2}$$

16. 答案不唯一, 9个篮球, 12个足球; 8个篮球, 14个足球

三、解答题(本题共 68 分, 第 17-22 题, 每小题 5 分, 第 23-26 题, 每小题 6 分, 第 27-28 题, 每小题 7 分)

解不等式②,得 x > -2.......4分

19.
$$\mathfrak{M}$$
: $(2x+1)(2x-1)-x(x-3)$

$$= 4x^2 - 1 - x^2 + 3x ...$$

$$x^2 + x - 1 = 0$$
,

$$\therefore x^2 + x = 1, \qquad ... 4 \,$$

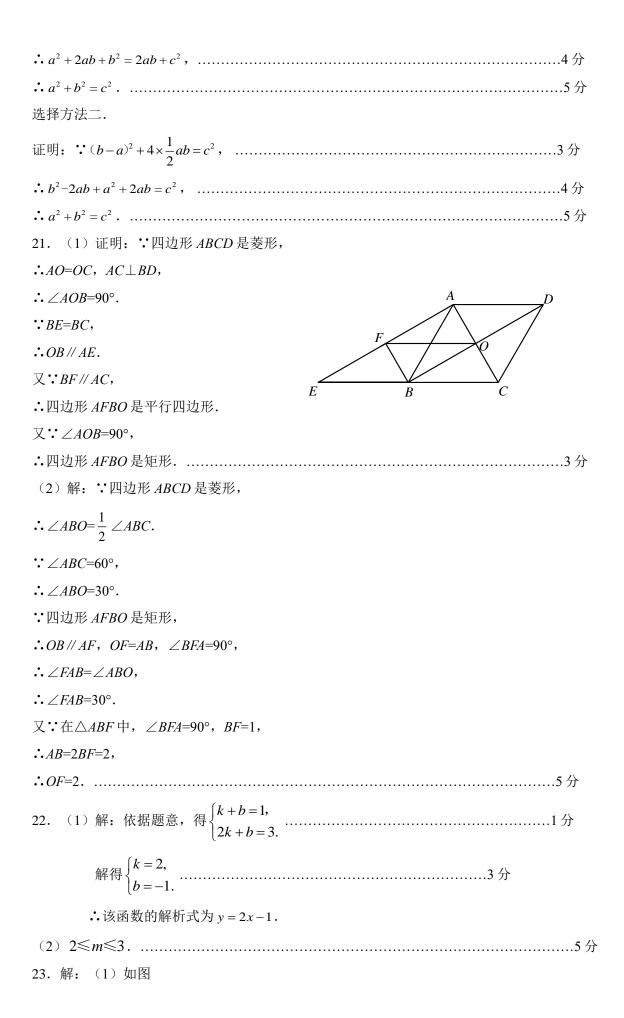
$$\therefore 3x^2 + 3x = 3$$

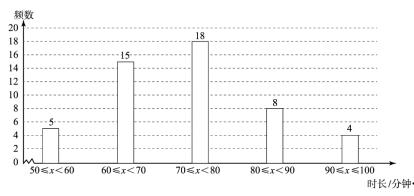
:原式

$$=3-1=2$$
.

.....5分

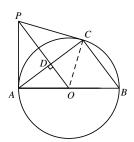
20. 选择方法一.

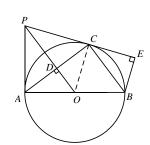




- (3) 40.6分
- 24. (1)证明:连接 OC.
- :AP 是⊙O 的切线,
- $\therefore AP \perp OA$,
- ∴∠*PAO*=90°.
- $: OD \perp AC,$
- $\therefore AD = CD$,
- $\therefore AP = CP$
- \mathbb{Z} : OA = OC, OP = OP,
- $\therefore \triangle AOP \cong \triangle COP$,
- $\therefore \angle PAO = \angle PCO = 90^{\circ},$
- $\therefore OC \perp PC$.
- 又**:**点 C在 $\odot O$ 上,

- (2) 解: *∵AB* 是 ⊙ *O* 的直径,
- ∴ ∠*ACB*=90°.
- *∴* ∠*ACO*+∠*OCB*=90°.
- : CP 是⊙O 的切线,
- ∴ ∠*OCE*=90°,
- $\therefore \angle OCB + \angle ECB = 90^{\circ}$,
- $\therefore \angle ECB = \angle OCA$.
- : OA=OC,
- $\therefore \angle CAB = \angle OCA$,
- $\therefore \angle CAB = \angle ECB$.
- $\mathbf{Cos} \angle CAB = \frac{4}{5},$
- $\therefore \cos \angle BCE = \frac{4}{5}.$





 $BE \perp PC$

 $\therefore \angle CEB = 90^{\circ}.$

在 $\triangle BCE$ 中,: CE=4, $\cos \angle BCE=\frac{CE}{CR}=\frac{4}{5}$,

 $\therefore CB=5$.

:OA=OB, AD=CD,

$$\therefore OD = \frac{1}{2}BC = \frac{5}{2}.$$

根据表格中的数据可知, 抛物线的顶点坐标为 $(4,\frac{5}{3})$,

$$\therefore h=4, k=\frac{5}{3},$$

:
$$y = a(x-4)^2 + \frac{5}{3}(a \neq 0)$$
.

$$a(0-4)^2 + \frac{5}{3} = 1$$

解得
$$a = -\frac{1}{24}$$
,

(2) :点
$$(-2, y_1)$$
, $(2, y_2)$ 在抛物线上, 且 $y_1 = y_2$,

$$\therefore 2 - t = t - (-2)$$

(3) :点(-2,
$$y_1$$
), (2, y_2), (3, y_3)在抛物线 $y = x^2 - 2tx + t^2 + 1$ 上,

$$y_1 = 4 + 4t + t^2 + 1$$
, $y_2 = 4 - 4t + t^2 + 1$, $y_3 = 9 - 6t + t^2 + 1$.

由
$$y_2 < y_3$$
, 得 $t < \frac{5}{2}$.

由
$$y_3 < y_1$$
, 得 $t > \frac{1}{2}$.

$$\therefore \frac{1}{2} < t < \frac{5}{2} \qquad . \qquad . \qquad . \qquad . \qquad . \qquad .$$

$$:$$
点 $(m, y_3)(m ≠ 3)$ 在抛物线上,

:点
$$(m, y_3)$$
, $(3, y_3)$ 关于抛物线的对称轴 $x=t$ 对称,且 $m < t$.

 $\therefore 3-t=t-m,$

解得 m = 2t - 3.

证明:

- :DE=AD,
- $\therefore \angle DAB = \angle DEA$.

:点 E 关于射线 CB 的对称点为 F,

 $\therefore \triangle DBF \cong \triangle DBE$

 $\therefore \angle DFB = \angle DEB$

证明:设EF与射线CB交于点G.

:点 E 关于射线 CB 的对称点为 F,

 $\therefore \triangle DBF \cong \triangle DBE$, $EF \perp CB$,

 $\therefore \angle BDF = \angle BDE$, DF = DE, $\angle DFB = \angle DEB$.

AC=BC, $\angle C=90^{\circ}$,

 $\therefore \angle BAC = \angle CBA = 45^{\circ},$

 $\therefore \angle ABC = \angle BDE + \angle DEB = 45^{\circ}$,

 $\therefore \angle DFB + \angle BDF = 45^{\circ}$.

 \therefore $\angle CAD + \angle DAB = 45^{\circ}$,

 $\therefore \angle CAD = \angle BDF$.

 $\therefore DE=AD$, DF=DE,

 $\therefore AD=DF$.

 $:: \angle C = 90^{\circ}, EF \perp CB,$

 $\therefore \angle C = \angle FGD = 90^{\circ},$

 $\therefore \triangle ACD \cong \triangle DGF$

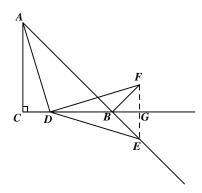
 \therefore CD=FG.

 $\therefore \angle FBG = \angle DFB + \angle BDF = 45^{\circ}$,

 $\therefore \triangle FBG$ 为等腰直角三角形,

 $\therefore FB = \sqrt{2}FG$,

 $\therefore FG = \frac{\sqrt{2}}{2} FB,$

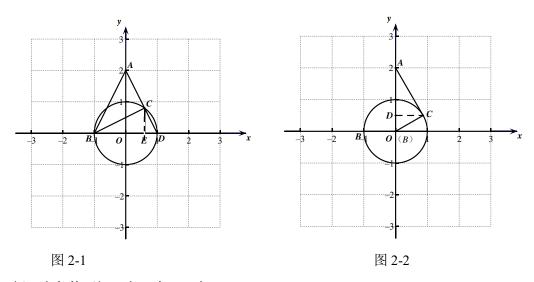


$$\therefore CD = \frac{\sqrt{2}}{2} FB.$$

:BC=BD+CD,

$$\therefore BC = BD + \frac{\sqrt{2}}{2}FB . ag{6}$$

(2)



解:由条件可知,点C在 \odot O上,

如图 2-1 所示, 当B (-1, 0), D (1, 0) 时, 连接AD, 与 $\odot O$ 交于点C,

∴BD 为⊙*O* 直径,

 $\therefore \angle BCD = \angle ACB = 90^{\circ}.$

∵在 Rt△AOD 中,∠AOD=90°,

由勾股定理得 $AD=\sqrt{5}$.

∵在 Rt△*BCD* 中,cos∠*CDB*=
$$\frac{DC}{BD}$$
,

在 Rt $\triangle AOD$ 中, $\cos \angle CDB = \frac{OD}{AD}$,

$$\therefore \frac{DC}{BD} = \frac{OD}{AD} ,$$

$$\therefore \frac{DC}{2} = \frac{1}{\sqrt{5}} ,$$

$$\therefore CD = \frac{2\sqrt{5}}{5}.$$

过点 C作 $CE \perp BD$.

∴在 Rt△*CED* 中,cos∠*CDB*= $\frac{DE}{CD} = \frac{1}{\sqrt{5}}$,

$$\therefore DE = \frac{2}{5}.$$

$$:OD=1$$
,

$$\therefore OE = \frac{3}{5},$$

$$\therefore x_c = \frac{3}{5}.$$

如图 2-2 所示, 当 B 位于原点, AC 与圆 O 相切时, 过点 C 作 $CD \perp y$ 轴于点 D.

- *∵AC*与⊙*O*相切,
- ∴ ∠*ACO*=90°,
- ∴在 Rt $\triangle AOC$ 中,由勾股定理得 $AC=\sqrt{3}$.
- ∵在 Rt△DCA中, $\sin \angle DAC = \frac{DC}{AC}$,

在 Rt $\triangle OCA$ 中, $\sin \angle DAC = \frac{OC}{AO}$,

$$\therefore \frac{DC}{AC} = \frac{OC}{AO},$$

$$\therefore \frac{DC}{\sqrt{3}} = \frac{1}{2},$$

$$\therefore DC = \frac{\sqrt{3}}{2}.$$

$$\therefore x_C = \frac{\sqrt{3}}{2} .$$