初 三 数 学

1．本试卷共 8 页，包括三道大题， 28 道小题，满分 100 分。考试时间 120 分钟。

注 意 事 项

2．在答题卡上准确填写学校名称，班级和姓名。
3．试题答案一律填涂或书写在答题卡上，在试卷上作答无效。
4．在答题卡上，选择题，作图题用 2 B 铅笔作答，其他试题用黑色字迹签字笔作答。
5．考试结束，请将试卷和答题卡一并交回。

一，选择题（本题共 16 分，每小题 2 分）

下面各题均有四个选项，其中只有一个是符合题意的。
1．已知 $2 x=3 y(y \neq 0)$ ，下列比例式成立的是
A．$\frac{x}{2}=\frac{y}{3}$
B．$\frac{x}{3}=\frac{y}{2}$
C．$\frac{x}{y}=\frac{2}{3}$
D．$\frac{x}{2}=\frac{3}{y}$

2．如图，$\triangle A B C$ 中，$D, ~ E$ 分别为 $A B, ~ A C$ 边上的点，$D E / / B C$ ，若 $A D=2 B D$ ，则 $\frac{D E}{B C}$ 的值为
A．$\frac{1}{2}$
B．$\frac{3}{2}$
C．$\frac{2}{1}$
D．$\frac{2}{3}$

3．将抛物线 $y=2 x^{2}$ 的图象先向左平移 1 个单位，再向下平移 3 个单位，得到的抛物线的表达式是
A．$y=2(x+1)^{2}-3$
B．$y=2(x-1)^{2}-3$
C．$y=2(x+1)^{2}+3$
D．$y=2(x-1)^{2}+3$

4．如图，每个小正方形的边长为 1 ，点 $A, ~ B, ~ C$ 均在格点上，则 $\sin B$ 的值是
A． 1
B．$\frac{3}{4}$
C．$\frac{3}{5}$
D．$\frac{4}{5}$

5．如图，若点 A 是反比例函数 $y=\frac{2}{x}(x>0)$ 的图象上一点，过点 A 作 x 轴的垂线交 x 轴于点 B ，点 C 是 y 轴上任意一点，则 $\triangle A B C$ 的面积为
A． 1
B． 2
C． 3
D． 4

6．如图，$\square A B C D$ 中，点 E 为 $A D$ 中点，若 $\triangle A E O$ 的面积为 1 ，则 $\triangle B O C$ 的面积为
A． 2
B． 3
C． 4
D． 8

7．＂今有圆材，埋在壁中，不知大小，以锯锯之，深一寸，锯道长一尺，问径几何？＂这是《九章算术》中的一个问题，用现代的语言表述为：如图，$C D$ 为 $\odot O$ 的直径，弦 $A B \perp C D$ 于 $E, C E=1$ 寸，弦 $A B=10$ 寸，则 $\odot O$ 的半径为多少寸
A． 5
B． 12
C． 13
D． 26

8．如果 I 表示汽车经撞击之后的损坏程度，经多次实验研究后知道，I 与撞击时的速度 v 的平方之比是常数 2 ，则 I 与 v 的函数关系为
A．正比例函数关系
B．反比例函数关系
C．一次函数关系
D．二次函数关系

二，填空题（本题共 16 分，每小题 2 分）

9．函数 $y=\sqrt{x-3}$ 的自变量 x 的取值范围是 \qquad .

10．扇形的圆心角为 120° ，半径为 3 ，则扇形的弧长为 \qquad .

11．如图，在 Rt $\triangle A B C$ 中，$\angle C=90^{\circ}$ ，如果 $\cos A=\frac{2}{3}$ ， $A B=6$ ，那么 $A C$ 的长为 \qquad .

12．如图，在 $\odot O$ 中，A, B, C 是 $\odot O$ 上三点，如果 $\angle A C B=30^{\circ}$ ，弦 $A B=5$ ，那么 $\odot O$ 的半径长为 \qquad .

13．已知二次函数 $y=a x^{2}+b x+c(a \neq 0)$ 的部分图象，则关于 x 的一元二次方程 $a x^{2}+b x+c=0$ 的解为 \qquad .

14．如图，Rt $\triangle A B C$ 中，$\angle B A C=90^{\circ}, A D \perp B C$ 于 $D, B D=1$ ， $C D=4$ ，则 $A D$ 的长为 \qquad ．

15．青藏铁路是当今世界上海拔最高，线路最长的高原铁路，因路况，季节，天气等原因行车的平均速度在 $250 \sim 360$（千米／小时）之间变化，铁路运行全程所需要的时间（小时）与运行的平均速度（千米／小时）满足如图所示的函数关系，列车运行的平均速度最大和列车运行的平均速度最小时全程所用时间相差 \qquad小时．

16．张老师准备为书法兴趣小组的同学购买上课的用具，在文具商店看到商店有 $\mathrm{A}, ~ \mathrm{~B}$ 两种组合和 C，D，E，F 商品及它们的售价，组合及单件商品质量一样，若该小组共有 12 人，其中，笔和本每人各需要一份，砚台 2 人一方即可，墨汁 n 瓶 $(n \geqslant 3)$ ．张老师共带了 200 元钱，请给出一个满足条件的购买方案 \qquad （购买数量写前面商品代码写后面即可，例如： $2 \mathrm{~A}+3 \mathrm{~B}+\cdots) ; n$ 最多买 \qquad瓶。

商 ${ }^{\|c\|}$ 品	价格
组合 $\mathrm{A}(1$ 支笔 +1 个本 +1 方砚台 +1 瓶．墨汁 $)$	25 元
组合 $\mathrm{B}(1$ 支笔 +1 个本 +1 瓶墨汁 $)$	18 元
$\mathrm{C}: 1$ 支笔	5 元
D： 1 个本	4 元
E：一方砚台	10 元
F：一瓶墨汁	12 元

三，解答题（本题共 68 分，第 $17, ~ 18, ~ 20-23, ~ 25$ 题，每题 5 分；第 $19, ~ 24$ 题，每题 6 分；第

26－28题，每题7分）

解答应写出文字说明，演算步骤或证明过程。
17．计算：$|-\sqrt{3}|+\left(\frac{1}{5}\right)^{-1}-\sqrt{27}+2 \cos 30^{\circ}$ ．

知：如图，在 $\triangle A B C$ 中，D 为 $A B$ 边的中点，连接 $C D$ ， $\angle A C D=\angle B, A B=4$ ，求 $A C$ 的长．

19．已知二次函数 $y=x^{2}-2 x-3$ ．
（1）求该二次函数的顶点坐标；
（2）求该二次函数图象与 x 轴，y 轴的交点；
（3）在平面直角坐标系 $x O y$ 中，画出二次函数 $y=x^{2}-2 x-3$ 的图象；
（4）结合函数图象，直接写出当 $-1 \leqslant x \leqslant 2$ 时，y 的取值范围。

20．如图，已知劣弧 $\overparen{A B}$ ，如何等分 $\overparen{A B}$ ？下面给出两种作图方法，选择其中一种方法，利用直尺和圆规完成作图，并补全证明过程。
方法一：（1）作射线 $O A, ~ O B$ ；
（2）作 $\angle A O B$ 的平分线 $O D$ ，与 $\overparen{A B}$ 交于点 C ；
点 C 即为所求作．
证明：$\because O C$ 平分 $\angle A O B$
$\therefore \angle A O C=\angle B O C$
\therefore \qquad （ \qquad （填推理的依据）。
方法二：（1）连接 $A B$ ；
（2）作线段 $A B$ 的垂直平分线 $E F$ ，直线 $E F$ 与 $\overparen{A B}$ 交于点 C ；点 C 即为所求作．
证明：$\because E F$ 垂直平分弦 $A B$
\therefore 直线 $E F$ 经过圆心 O ，
\therefore \qquad （ \qquad ）（填推理的依据）。

缕同学们来到操场，想利用所学知识测量旗杆的高度．方法如下：如图，线段 $A B$ 表示 ，已知 A, C, D 三点在一条直线上，首先用 1.5 米高的测角仪在点 C 处测得旗杆顶端 B 的仰角为 65° ，在点 D 处测得旗杆顶端 B 的仰角为 45° ，其中，线段 $C E$ 和 $D F$ 均表示测角仪，然后测量出 $C D$ 的距离为 5.5 米，连接 $E F$ 并延长交 $A B$ 于点 G ．根据这些数据，请计算旗杆 $A B$ 的长约为多少米．
$\left(\sin 65^{\circ} \approx 0.9, \cos 65^{\circ} \approx 0.4, \tan 65^{\circ} \approx 2.1\right)$

22．已知：一次函数 $y=k x-2(k \neq 0)$ ，与反比例函数 $y=\frac{m}{x}(m \neq 0, x>0)$ 的图象交与点 $A(2,4)$ ．
1）求一次函数和反比例函数的表达式；
2）已知点 $P(0, n)(n>0)$ 过点 P 作垂直于 y 轴的直线，与反比例函数的图象交于点 B ，与一次函数的图象交于点 C ，横，纵坐标都是整数的点叫做整点．若线段 $B C$ ， $A C$ 与反比例函数图象上 $A B$ 之间的部分围成的图象中（不含边界）恰有 3 个整点，直接写出 n 的取值范围．

23．如图，在 Rt $\triangle A B C$ 中，$\angle A C B=90^{\circ}, A D$ 平分 $\angle B A C$ 交 $B C$ 边于点 $D, D E \perp A B$ 于点 E ，若 $B D=5, \cos B=\frac{4}{5}$ ，求 $A C$ 的长．

24．如图，已知锐角 $\angle A B C$ ，以 $A B$ 为直径画 $\odot O$ ，交 $B C$边于点 $M, B D$ 平分 $\angle A B C$ 与 $\odot O$ 交于点 D ，过点 D 作 $D E \perp B C$ 于点 E ．
（1）求证：$D E$ 是 $\odot O$ 的切线；
（2）连接 $O E$ 交 $B D$ 于点 F ，若 $\angle A B C=60^{\circ}$ ， $A B=4$ ，求 $D F$ 长．

25．某景观公园内人工湖里有一组小型喷泉，水柱从垂直于湖面的水枪喷出，若设距水枪水平距离为 x 米时水柱距离湖面高度为 y 米，y 与 x 近似的满足函数关系 $y=a(x-h)^{2}+k(a<0)$ ．现测量出 x 与 y 的几组数据如下：

x（米）	0	1	2	3	4	\cdots
y（米）	1.75	3.0	3.75	4.0	3.75	\cdots

请解决以下问题：
（1）求出满足条件的函数关系式；
（2）身高 1.75 米的小明与水柱在同一平面中，设他到水枪的水平距离为 m 米 $(m \neq 0)$ ，画出图象，结合图象回答，若小明被水枪淋到 m 的取值范围。

26．在平面直角坐标系 $x O y$ 中，抛物线 $y=a x^{2}+b x(a \neq 0)$ ，设抛物线的对称轴为 $x=t$ ．
（1）当抛物线过点 $(-2,0)$ 时，求 t 的值；
（2）若点 $(-2, m)$ 和 $(1, n)$ 在抛物线上，若 $m>n$ ，且 $a m n>0$ ，求 t 的取值范围．

图，$\triangle A B C$ 中，D 为 $A C$ 边中点，E 为 $B C$ 延长线上一点，连接 $E D$ 并延长，使 $D F=E D$ ，连接 $B F$ ．
（1）依题意补全图形；
（2）连接 $B D$ ，若 $C E^{2}+B F^{2}=A B^{2}$ ；猜想 $B D$ 与 $D E$ 的数量关系，并证明．

28．如图，平面直角坐标系中，矩形 $A B C D$ ，其中 $A(1,0), ~ B(4,0), ~ C(4,2), ~ D(1,2)$ 定义如下：若点 P 关于直线 l 的对称点 P^{\prime} 在矩形 $A B C D$ 的边上，则称点 P 为矩形 $A B C D$ 关于直线 l 的＂关联点＂。
（1）已知点 $P_{1}(-1,2)$ ，点 $P_{2}(-2,1)$ ，点 $P_{3}(-4,1)$ ，点 $P_{4}(-3,-1)$ 中是矩形 $A B C D$关于 y 轴的关联点的是 \qquad ；
（2）$\odot O$ 的圆心 $O\left(-\frac{7}{2}, 1\right)$ 半径为 $\frac{3}{2}$ ，若 $\odot O$ 上至少存在一个点是矩形 $A B C D$ 关于直线 $x=t$ 的关联点，求 t 的取值范围；
（3）$\odot O$ 的圆心 $O(m, 1)(m<0)$ 半径为 r ，若存在 t 值使 $\odot O$ 上恰好存在四个点是矩形 $A B C D$ 关于直线 $x=t$ 的关联点，写出 r 的取值范围，并写出当 r 取最小值时 t 的取值范围（用含 m 的式子表示）。

平谷区 2022 年一模试卷评分标准

初 三 数 学

一，选择题（本题共 16 分，每小题 2 分）

题号	1	2	3	4	5	6	7	8
答案	B	D	A	C	A	C	C	D

二，填空题（本题共 16 分，每小题 2 分）

题号	9	10	11	12	13	14	15	16
答案	$x \geq 3$	2π	4	5	$x_{1}=-3, x_{2}=1$	2	2.2	答案不唯 一例如 $5 \mathrm{~A}+1 \mathrm{E}+7 \mathrm{C}+7 \mathrm{D}$ $4 \mathrm{~A}+2 \mathrm{E}+8 \mathrm{C}+8 \mathrm{D}$ $3 \mathrm{~A}+3 \mathrm{E}+9 \mathrm{C}+9 \mathrm{D}+1 \mathrm{~F}$ 等 $;$

三，解答题（本题共 68 分，第 17，18，20，21，22，23，25 题，每小题 5 分；第 $19, ~ 24$ 题，每小题 6 分；第26－28题，每小题 7 分）解答应写出文字说明，演算步骤或证明过程．

17．解：$|-\sqrt{3}|+\left(\frac{1}{5}\right)^{-1}-\sqrt{27}+2 \cos 30^{\circ}$ ．
$=\sqrt{3}+5-3 \sqrt{3}+2 \times \frac{\sqrt{3}}{2}$
$=5-\sqrt{3}$

18．解：

$$
\begin{aligned}
& \because D \text { 为 } A B \text { 中点, } A B=4 \\
& \therefore A D=2 \\
& \cdot \cdot 1 \\
& \because \angle \mathrm{ACD}=\angle \mathrm{B}, \quad \angle \mathrm{~A}=\angle \mathrm{A} \\
& \therefore \triangle A D C \sim \triangle A C B
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{2}{A C}=\frac{A C}{4} \\
& \therefore A C=2 \sqrt{2}
\end{aligned}
$$

19.
（1）$y=x^{2}-2 x-3$
$=x^{2}-2 x+1-1-3=(x-1)^{2}-4 \therefore$ 顶点坐标为 $(1,-4)$

（3）令 $y=0, x^{2}-2 x-3=0$ ，解得 $x_{1}=3, x_{2}=-1 \therefore$ 与 x 轴的交点为 $(3,0)$ 和 $(-1,0) \cdots 4$
（4）画出图象
.5
（5）$-4 \leq y \leq 0$

方法一：（1）作射线 $\mathrm{OA}, ~ \mathrm{OB}$ ；
（2）作 $\angle \mathrm{AOB}$ 的平分线 OC ，与弧 AB 交于点 C ；点 C 即为所求作．

作图
证明：$\because O C$ 平分 $\angle A O B$

$$
\begin{aligned}
& \therefore \angle \mathrm{AOC}=\angle \mathrm{BOC} \\
\therefore \quad & \text { 弧 } \mathrm{AC}=\text { 弧 } \mathrm{BC}
\end{aligned}
$$

（2）证明：$\because E F$ 垂直平分弦 $A B$
\therefore 直线 EF 经过圆心 0 ，
\therefore 弧 $\mathrm{AC}=$ 弧 BC ＿．．． 3
（垂径定理 ）

21．解：由题意，$\angle \mathrm{BGF}=90^{\circ}$

$$
\begin{aligned}
& \angle \mathrm{BEG}=65^{\circ}, \angle \mathrm{BFG}=45^{\circ}, \mathrm{EF}=\mathrm{CD}=5.5 \text { 米 } \\
& \mathrm{AG}=\mathrm{EC}=\mathrm{FD}=1.5 \text { 米 } \ldots . ~
\end{aligned}
$$

在 Rt $\triangle B G E$ 中，$\because \angle B G F=90^{\circ}, \angle \mathrm{BEG}=65^{\circ}$

$$
\therefore \tan \angle \mathrm{BEG}=\frac{\mathrm{BG}}{\mathrm{EG}} \approx 2.1 .
$$

设 $\mathrm{EG}=x$ ，则 $\mathrm{BG}=2.1 x$

在 Rt $\triangle B G F$ 中，$\because \angle B G F=90^{\circ}, \angle B F G=45^{\circ}$
\qquad
$\therefore 2.1 x=x+5.5$
解得，$\therefore x=5$

22．解：（1）\because 反比例函数 $y=\frac{m}{x}(m \neq 0, x>0)$ 过点 $\mathrm{A}(2,4)$
$\therefore \mathrm{m}=8 \therefore$ 反比例函数的解析式为：$y=\frac{8}{x}$
\because 一次函数 $y=k x-2(k \neq 0)$ 过点 $\mathrm{A}(2,4)$
$\therefore \mathrm{k}=3 \therefore$ 一次函数的解析式为：$y=3 \mathrm{x}-2$2

（2） $1 \leq n<2$ 或 $7<n \leq 8$

23．解：

$\because D E \perp A B$
$\therefore \angle \mathrm{BED}=90^{\circ}$
$\because \cos B=\frac{4}{5}, B D=5$
$\therefore B E=4, \quad D E=3$
$\because A D$ 平分 $\angle B A C, \angle A C B=90^{\circ}, ~ D E \perp A B$
$\therefore D C=D E=3$
$\therefore B C=B D+D C=8$
$\because \cos B=\frac{4}{5}, B C=8$
$\therefore A B=10$
由勾股，$A C=6$

24．（1）解：连结 OD．
$\because \mathrm{BD}$ 平分 $\angle \mathrm{ABC}$
$\therefore \angle \mathrm{DCO}=90^{\circ}$
$\therefore \angle \mathrm{ABD}=\angle \mathrm{CBD}$ ，
$\because O D=O B$
$\therefore \angle 0 \mathrm{DB}=\angle \mathrm{ABD}$ ．
$\therefore \angle 0 \mathrm{DB}=\angle \mathrm{CBD}$ ．
$\therefore 0 \mathrm{D} / / \mathrm{BC}$ ．
$\because D E \perp B C$

$\therefore \angle 0 \mathrm{DE}=\angle \mathrm{DEB}=90^{\circ}$
$\therefore D E$ 是 $\odot O$ 的切线
（2）连接 AD
$\because \angle A B C=60^{\circ}$ BD 平分 $\angle \mathrm{ABC}$ ，
$\therefore \angle \mathrm{ABD}=\angle \mathrm{CBD}=30^{\circ}$
$\because A B$ 是直径
$\therefore \angle \mathrm{ADB}=90^{\circ}$
$\because A B=4$
$\therefore \mathrm{AD}=2, \quad B D=2 \sqrt{3}$
$\because \angle \mathrm{CBD}=30^{\circ}, \angle \mathrm{DEB}=90^{\circ}$
$\therefore D E=\sqrt{3}, \quad \mathrm{BE}=3$
$\because \mathrm{OD} / / \mathrm{BC}$
$\therefore \triangle D F O \sim \triangle B F E$

$\therefore \frac{\mathrm{OD}}{B E}=\frac{\mathrm{DF}}{F B}$
设 $\mathrm{DF}=\mathrm{x}$
$\therefore \frac{2}{3}=\frac{\mathrm{x}}{2 \sqrt{3}-x} \therefore \mathrm{DF}=\frac{4}{5} \sqrt{3}$

25．解：（1）由表格可知抛物线的顶点坐标为（ 3,4 ）
设抛物线的解析式为 $y=a(x-3)^{2}+4(a \neq 0)$ \qquad ．． 1
\because 抛物线过点 $(1,3)$
代入得， $4 a+4=3$
$\therefore \mathrm{a}=-\frac{1}{4}$. .3
$\therefore y=-\frac{1}{4}(x-3)^{2}+4$

（2） $6 \leq m \leq 7$.5
26.
（1）对称轴 $\mathrm{x}=-1$
2
（2）若 $\mathrm{a}>0$ ，
当 $m>n>0$ 时，如图

$$
\left\{\begin{array}{l}
t+2>1-t \\
t<1-t
\end{array}\right.
$$

此时，$-\frac{1}{2}<t<\frac{1}{2}$

$$
\therefore-\frac{1}{2}<t<\frac{1}{2} \text { 或 } t<-1
$$

27．（1）补全图形

 1
（2）结论： $\mathrm{BD}=\mathrm{DE}$ 。 ．． 2
证明：连接 AF 。
$\because \mathrm{D}$ 为 AC 中点
$\therefore \mathrm{AD}=\mathrm{DC}$ ．
.3
$\because \mathrm{DF}=\mathrm{DE}, \mathrm{AD}=\mathrm{DC}, \quad \angle \mathrm{ADF}=\angle \mathrm{EDC}$
$\therefore \triangle \mathrm{ADF} \cong \triangle \mathrm{CDE}$ ．
$\therefore \mathrm{AF}=\mathrm{EC}, \angle \mathrm{AFD}=\angle \mathrm{DEC}$ ． ．． 4
$\therefore \mathrm{AF} / / \mathrm{CE}$

$$
\begin{aligned}
& \because C E^{2}+B F^{2}=A B^{2} \\
& \quad \therefore \angle \mathrm{AFB}=90^{\circ} \text {... } 5
\end{aligned}
$$

$\because \mathrm{FA} / / \mathrm{BE}$
$\therefore \angle \mathrm{FBE}=90^{\circ}$ 6
$\because \mathrm{FD}=\mathrm{DE}$

$$
\therefore B D=\frac{1}{2} E F=D E .
$$7

28. 解: (1) $\mathrm{P}_{1}, \mathrm{P}_{3}$;
(2) $-2 \leq t \leq 1$
.4

(3) $1 \leq r \leq \sqrt{13} ; \frac{1+m}{2}<t<\frac{2+m}{2}$ 或 $\frac{3+m}{2}<t<\frac{4+m}{2}$
