2022 北京房山初二(下)期末

数学

一、选择题(本题共8道小题,每小题2分,共16分)

下面各题均有四个选项,其中只有一个是符合题意的.

- 1. 当x = 0时,点P(x, y)一定在()
- A. *x*轴
- B. *y* 轴
- C. 坐标原点
- D. 第一象队
- 2. 在如图所示的四个函数图象中,y 的值随x 的增大而增大的是(

- Α.
- В
- C
- D.
- 3. 下面图形中既是轴对称图形又是中心对称图形的是()

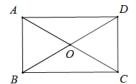
笛卡尔心形线

阿基米德螺旋线

科克曲线

赵爽弦图

A. 笛卡尔心形线

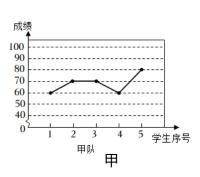

B. 阿基米德螺旋线

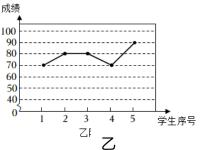
C. 科克曲线

- D. 赵爽弦图
- 4. 下列几个常见统计量中能够反映一组数据变化范围大小的是()
- A. 方差
- B. 中位数
- C. 众数
- D 极差

- 5. 方程 $x^2 x + 1 = 0$ 的根的情况是
- A. 有两个相等实数根 B. 有两个不相等实数根
- C. 没有实数根

- D. 无法判断
- 6. 如图, \Box *ABCD* 的对角线 *AC、BD* 交于点 *O, AAOB* 是等边三角形,*AB* = 2,则 \Box *ABCD* 的面积为 ()


A. $4\sqrt{3}$

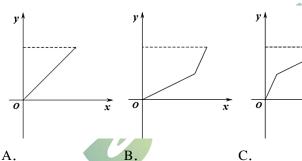

B. 4./2

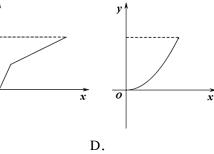
C. $3\sqrt{3}$

D. 8

7. 为庆祝中国共产主义青年团成立 100 周年,某区举办了团课知识竞赛,甲、乙两所中学各派 5 名学生参加,两队学生的竞赛成绩如图所示,下列关系完全正确的是()

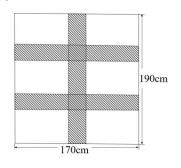



B.
$$S_{\text{H}}^2 = S_{Z_1}^2 \frac{1}{x_{\text{H}}} > \frac{1}{x_{\text{Z}_2}}$$


C. $S_{\#}^2 > S_{Z}^2 = \overline{x_{\#}} = \overline{x_{Z}}$ D. $S_{\#}^2 = S_{Z}^2 = \overline{x_{\#}} < \overline{x_{Z}}$

D.
$$S_{\text{H}}^2 = S_{\text{Z}}^2 = \frac{1}{x_{\text{H}}} < \frac{1}{x_{\text{Z}}}$$

8. 如右图, 匀速地向该容器内注水(单位时间内注水体积相同), 在注满水的过程中, 满足容器中 水面的高度 y 与时间 x 之间函数关系的图象可能是(



填空题(本题共8道小题,每小题2分,共16分)

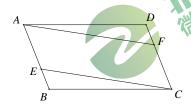
函数 $y = \frac{2}{x+3}$ 的自变量 x 的取值范围是_____.

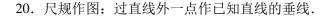
10. 方程 $x^2 - 2x - 3 = 0$ 的解为

13. 特殊时期, 市疾控专家提醒广大市民, 乘坐电梯切莫大意, 务必做好个人防护措 施.如图所示,某商场在厢式电梯地面铺设了醒目的隔离带,提醒顾客乘坐电梯时 持足够的空间距离,减少接触.电梯地面部分为一个长为 190cm, 宽为 170cm 的矩 形地面,已知无隔离带区域(空白部分)的面积为29700cm²,若设隔离带的宽度 均为 xcm,那么 x满足的一元二次方程是

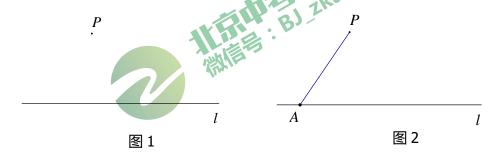
14. 画一个任意四边形 ABCD,顺次连接各边中点 $E \times F \times G \times H$,所得到的新四边形 EFGH 称为中点四边形. 当原 四边形 ABCD 满足 时,中点四边形 *EFGH* 为菱形.

15. 一次函数的图象经过点(2, -1),且与两坐标轴围成等腰三角形,则此函数的表达式为


16. 已知: 直线 y=-x+1 与 x 轴、y 轴分别交于点 A、点 B,当点 P 在直线 AB 上运动时,平面内存在点 O,使得 以点 $O \times P \times B \times Q$ 为顶点的四边形是菱形,请你写出所有满足条件的点 Q 的坐标

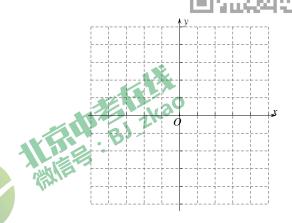

- 三、解答题(本题共 12 道小题, 共 68 分. 17 题 4 分; 19, 20, 24, 26 每题 5 分; 21, 22, 23, 25, 28 每分; 18, 27 每题 7 分)
- 17. 一次函数 y = kx + b ($k \neq 0$) 与 y 轴交点纵坐标为一3, 与 x 轴交点的横坐标为一1
- (1) 在坐标系中画出一次函数 y = kx + b ($k \neq 0$) 的图象;
- (2) 结合图象解答下列问题:
- ①当x > 0时,y的取值范围是 ;
- ②当-3 < y < 0时, x的取值范围是 ;

- (1) $x^2 = 5x$;
- (2) $2x^2-4x+1=0$ (用配方法)


已知:如图 1 所示,直线 l 及直线外一点 P.

求作:直线l的垂线PC.

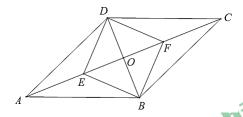
作法: (1) 如图 2, 在直线 l上选取点 A, 连接 PA;


- (2) 以点 P 为圆心, 线段 PA 的长为半径作弧, 此弧与直线 l 交于点 B (不与点 A 重合);
- (3) 分别以点 A、点 B 为圆心,以线段 PA 的长为半径画弧,两弧在直线 l 下方交于点 C;
- (4) 作直线 PC;

则直线 PC 就是所求作的直线 l 的垂线

- (1) 请你根据作法用尺规将图 2 补全,保留作图痕迹;
- (2) 补全以下证明过程:

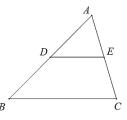
连接 PB、AC、BC,


由题意可知 PA=PB=CA=CB,

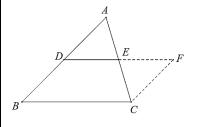
- ∴四边形 *PACB* 是____形(
- $\therefore PC \perp AB$ (

即直线 $PC \perp l$.

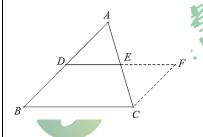
- 21. 已知:如图,□ABCD中,O为对角线AC、BD的交点,BD平分∠ABC.在OA上截取OE=OD,在OC上截取OF=OD.连结DE、EB、BF、FD.
- (1) 求证: □ *ABCD* 是菱形.
- (2) 判断四边形 BFDE 的形状并证明.



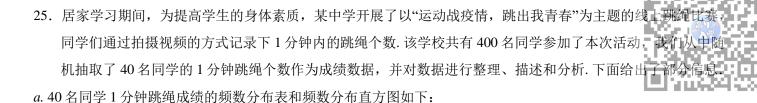
22. 下面是证明三角形中位线定理的两种添加辅助线的方法,选择其中一种,完成证明.


已知:如图, ΔABC 中,D、E分别是AB、AC的中点.

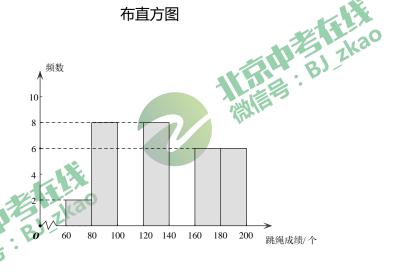
求证: DE//BC, 且 $DE = \frac{1}{2}BC$.


方法一

证明:如图,延长 DE 至点 F,使 EF=DE,连接 CF.



证明:如图,过点C作CF//AB交DE的延长线于F.


- 23. 已知关于 x 的一元二次方程 $x^2 + mx + n = 0$:
- (1) 当 $_{n=m-3}$ 时,不解方程,判断方程根的情况,并说明理由.
- (2) 若方程有两个相等的非零实数根,写出一组满足条件的m,n的值,并求此时方程的根.
- 24. 在平面直角坐标系 xOy 中,一次函数 y = kx + b ($k \neq 0$)的图象,由函数 y = x 的图象平移得到,且经过点(1, 2).
- (1) 求这个一次函数的解析式;
- (2) 当 x>1 时,对于 x 的每一个值,函数 $y=mx(m\neq 0)$ 的值大于一次函数 y=kx+b 的值,直接写出 m 的取值范围.

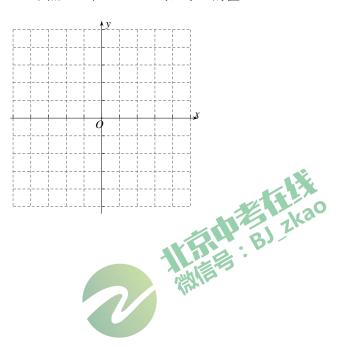
40 名同学 1 分钟跳绳成绩的频数分

40 名同学 1 分钟跳绳成绩的

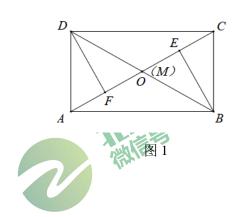
跳绳成绩 x(个)	频数	频率
60≤x < 80	2	0.05
80≤ <i>x</i> < 100	8	0.20
100≤x < 120	m	0.15
$120 \le x < 140$	8	0.20
$140 \le x < 160$	n	k
$160 \le x < 180$	6	0.15
180≤x < 200	6	0.15
合计	40	1.00

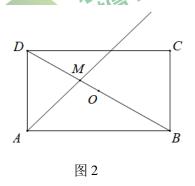
b. 40 名同学 1 分钟跳绳成绩在 120≤x<140 这一组的数据如下表 (表 2) 所示:

跳绳成绩(个)	120	125	128	135
频数	3	2	1	2

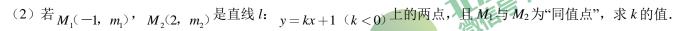

根据以上信息,回答下列问题:

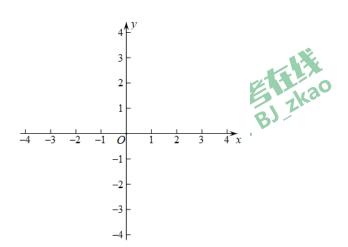
- (1) 表 1 中 m 的值为_____; k 的值为_____.
- (2) 补全该校 40 名学生 1 分钟跳绳成绩频数分布直方图.
- (3) 样本数据的中位数是____.
- (4) 学校准备对 1 分钟跳绳成绩 "不少于 180 个"以上的同学进行表彰,通过分析样本数据,估计 400 名参与者中可获得表彰的有_____名.


- 26. 在平面直角坐标系 xOy 中,函数 y = 2x 的图象与函数 y = -kx + 3 的图象交于点 A(1, m).


- (1) 求k的值;
- (2) 过点 A 作 x 轴的平行线 l ,直线 y=2x+b 与直线 l 交于点 B ,与函数 y=-kx+3 的图象交于点 C ,与 x 轴交 于点 D . 当 BD=2BC 时,求 b 的值.

- 27. 矩形 ABCD 中,点 M 是对角线 BD 上的一个动点(点 M 不与点 B, D 重合),分别过点 B, D 向射线 AM 作垂线,垂足分别为点 E, F,点 O 为 BD 的中点.
- (1) 如图 1, 当点 M 与点 O 重合时,请你判断 OE 与 OF 的数量关系,并加以证明;
- (2) 当点M运动到如图 2 所示位置时,请你在图 2 中补全图形,判断(1)中的结论是否仍然成立,并加以证明.




28. 在平面直角坐标系 xOy 中,对于 A , B 两点给出如下定义: 若点 A 到 x 、 y 轴的 距离中的最大值等于点 B 到 x 、 y 轴的距离中的最大值,则称 A , B 两点为"同值点".

例如,图中的A,B两点即为"同值点".

- (1) 已知点 P 的坐标为 (-2, 3),
- ①在点 C(3, -5) ,D(0, 2) ,E(-3, 1) 中,是点 P 的"同值点"的有

②若点 Q在直线 y=x-5上,且 P, Q 两点为"同值点",则点 Q 的坐标为_____

参考答案

一、选择题(本题共8道小题,每小题2分,共16分)

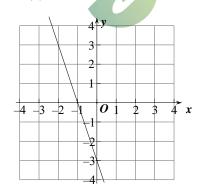
题号	1	2	3	4	5	6	7	8
答案	В	A	С	D	C	A	D	В

二、填空题(本题共8道小题,每小题2分,共16分)

9.
$$x \neq -3$$

9.
$$x \neq -3$$
; $10. \quad x_1 = 3, x_2 = -1$; $11. \pm 3$;

12.
$$m > 2 \exists m \neq 3$$


12.
$$m > 2 \pm m \neq 3$$
; 13. $190 - 2x$ $170 - x = 29700$

14. 对角线相等(或 AC=BD) ; 15.
$$y = x - 3$$
或 $y = -x + 1$;

16.
$$(1, 1)$$
, $(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$, $(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$, $(-\frac{1}{2}, \frac{1}{2})$

三、解答题(本题共12道小题,共68分: 17题4分; 19,20,24,26每题5分; 21,22,23,25,28每题6 分; 18, 27 每题 7分)

17. (1)

(2) ①y<-3......3 分

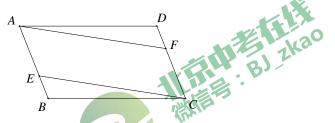
$$18.(1) x^2 = 5x$$

$$x x - 5 = 0$$

(2)
$$2x^2 - 4x + 1 = 0$$

解:
$$2x^2 - 4x = -1$$

$$x-1^2 = \frac{1}{2}$$


$$x-1 = \pm \frac{\sqrt{2}}{2}$$
......3 $\%$

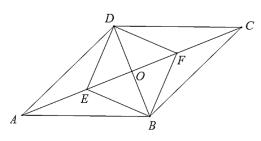
$$x-1=\frac{\sqrt{2}}{2}, x-1=-\frac{\sqrt{2}}{2}$$

∴方程的解为
$$x_1 = 1 + \frac{\sqrt{2}}{2}$$
, $x_2 = 1 - \frac{\sqrt{2}}{2}$

19. 证明:

- $:_{\Box ABCD}$,
- $\therefore AB = CD, AB // CD,$
- :BE=DF,
- $\therefore AB-BE=CD-DF$,
- ∇: AB// CD,
- ∴AF=EC.5 分
- 其它解法酌情给分

20.



菱形......3分

	菱形4分	四条边都相等的四边形是菱形.
菱形的对角线互相垂直5分	5 分	菱形的对角线互相垂直

21.证明:

 $(1) : \Box ABCD$,

 $\therefore AB // CD$,

∴ ∠CDB=∠ABD,1 ½

∵BD 平分∠ABC,

 $\therefore \angle ABD = \angle CBD$,

 $\therefore \angle CDB = \angle CBD$,

(2) 猜想: 四边形 BFDE 是正方形.......4分

∵菱形 ABCD,

 $\therefore OD = OB, BD \perp AC,$

:: OE = OD, OF = OD,

 $\therefore OE = OF$,

∴四边形 *DEBF* 是菱形,5 分

:: OE = OF = OB = OD,

 $\therefore EF=BD$,

∴四边形 *DEBF* 是正方形.6 分

22.方法一:

证明:

∵D、E分别为AB、AC中点,

在 $\triangle AED$ 与 $\triangle CEF$ 中,

AE=CE


 $\angle AED = \angle CEF$,

DE=EF

 $\therefore AB // CF, DB = CF,$

....4分

- ∴DE//BC, DF=BC,5分
- ∴DE=EF, $\square_{DE=\frac{1}{2}DF}$,

方法二:

证明: 过点 C作 CF // AB 交 DE 的延长线于点 F,

- ∴ ∠A=∠ACF,1 分
- ∵D、E分别为AB、AC中点,
- ∴AD=DB, AE=CE,

在 $\triangle AED$ 与 $\triangle CEF$ 中,

AE=CE

 $\angle A = \angle ACF$

- $\therefore EF=DE, AD=CF,$
- ∴DB=CF, ∇ ∴AB//CF,
- ∴DE // BC, DF=BC,5 分
- ∴DE=EF, $UDE=\frac{1}{2}DF$,
- $\therefore DE = \frac{1}{2}BC \dots 6 \,$
- 23.**#**: (1) ∵<math>n=m-3,
- :. 方程为 $x^2 + mx + m 3 = 0$
- $\therefore a=1$, b=m, c=m-3,
- $\Delta = b^2 4ac = m^2 4 \ m 3$
- $= m^2 4m + 12$
- $= m^2 4m + 4 + 8$
- ∵无论 m 取何值都有 $(m-2)^2 \ge 0$,
- ∴ $m-2^2+8>0$, $\mathbb{P}\Delta>0$
- ∴方程有两个不相等的实数根......3分
- (2) :: a=1, b=m, c=n,

$$\Delta = b^2 - 4ac = m^2 - 4n \cdots 4$$

::方程有两个相等的实数根,

当 m=2 时, 计算得到 n=1,

此时方程为 $x^2 + 2x + 1 = 0$

变形为 $x+1^2=0$

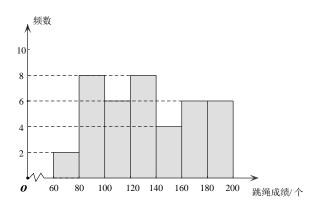
∴此时方程的解为 $x_1 = x_2 = -1$6分

24.解: (1) : y = kx + b 是由直线 y = x 平移得到的,

把点(1,2)代入,

得到 1+b=2,

b=1,......2 分


∴一次函数表达式为 $y = x + 1 \dots$

 $(2) m \geq 2 \dots$

25.解: (1) m=61分

k=0.10......2分

(2)

(3) 125 个......5 分

(4) 60 名......6 分

得到 *k*=1,2 分

 $\therefore y = -x + 3$

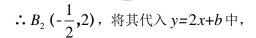
(2) 如图,情况①,由己知 $B_tD_t=2B_tC_t$,可知点 C_t 为线段 B_tD_t 的中点, 过点 B_1 作 $B_1E \perp x$ 轴,

::点 B_l 在直线 l上,可知 B_l E =2,取线段 D_l E 中点 F,

.....4分

- ∴线段 $C_{\iota}F$ 是△ $B_{\iota}D_{\iota}E$ 的中位线,
- $\therefore C_1 F = 1$,即 $y_{C_1} = 1$,将其代入直线 y = -x + 3 中,

得到 $x_{C_{I}}$ =2,即 C_{I} (2,1),……3分


将点 C_i (2, 1) 代入y=2x+b中,

得到 b=-3,......4 分

直线 B_ID_I 表达式为 y=2x-3,可得点 B_I 坐标为 $(\frac{5}{2},2)$

情况②, $B_2D_2=2B_2C_2$,

- ∵ B₂D₂ // B₁D₁, 直线 l// x轴,
- $\therefore B_2 D_2 = B_1 D_1,$
- $\therefore B_2C_2 = B_1C_1,$
- ∴可证 $\triangle B_1C_1A \cong \triangle B_2C_2A$,
- $\therefore B_2 A = B_1 A ,$
- $A (1, 2), B_1(\frac{5}{2}, 2),$

可得 *b*=3,......5 分

∴综上, b=3 或 b=-3

27. (1) 判断: *OE=OF*......1 分

证明: :: O 为 BD 中点,

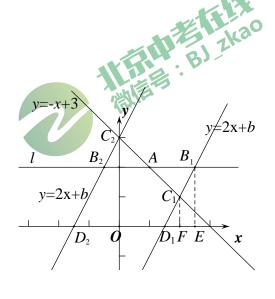
- $\therefore OD = OB$,
- $:DF \perp AO, BE \perp AO,$
- $\therefore \angle DFO = \angle BEO = 90^{\circ}$,

在 $\triangle DFO$ 与 $\triangle BEO$ 中,

 $\angle DFO = \angle BEO,$

 $\angle DOF = \angle BOE$

OD=OB,


 $\therefore \triangle DFO \cong \triangle BEO$,

(2)补全图形......3分

判断:成立......4分

证明: 连接 FO 并延长与 EB 交于点 G,5 分

是同值点

此时, $M_1(-1,3)$, $M_2(2,-3)$, 成立

∴ k = -1**或**k = -2