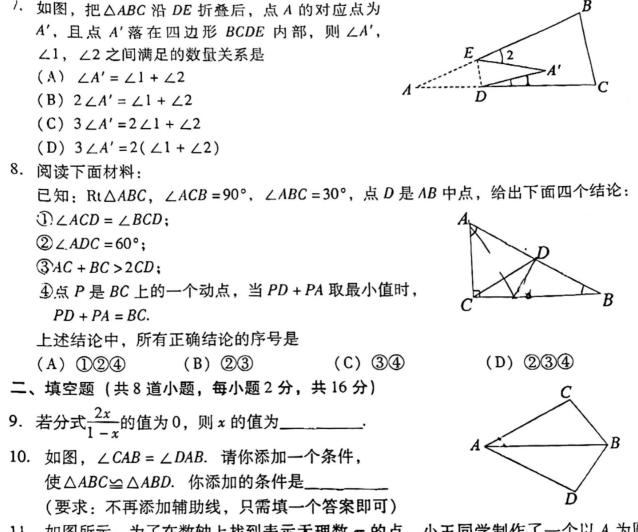

昌平区 2023—2024 学年第一学期初二年级期末质量抽测

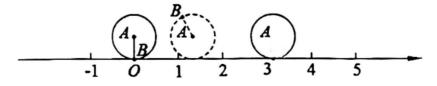
数学试卷 2024.1

本试卷共6页,三道大题,28个小题,满分100分。考试时间120分钟。考生务必 将答案填涂或书写在答题卡上,在试卷上作答无效。考试结束后,请交回答题卡。

- 一、选择题(共8道小题,每小题2分,共16分)
 第1-8题均有四个选项,符合题意的选项只有一个.
- 1. √9的值是
 - (A) 3 (B) -3 (C) ± 3 (D) 81
- 昌平,取"昌盛平安"之意,自西汉设县以来距今已有2000多年.期间辖区内修 建了众多的古今建筑.下列是昌平区的四个建筑图片,其中既是轴对称图形,又是 中心对称图形的是

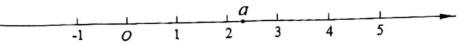

- (A) 2, 4, 7 (B) 5, 6, 6 (C) 1, 1, 2 (D) 3, 4, 5
- 4. 下列事件中,属于随机事件的是
 - (A) 李叔叔以家庭主申请人的身份申请北京市小客车指标,在提交申请后的第一次"摇号"就中签
 - (B) 直角三角形两锐角互余
 - (C) 第一小组的 10 名同学中,包含了 3 名女生,若从这组选出 4 名同学完成任务, 则至少有 1 名男生
 - (D) 掷一枚标准的骰子, 面朝上的点数等于8
- 5. 下列选项中,最接近√6的整数是

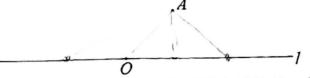
(A) 0


 6. 甲做 360 个零件与乙做 480 个零件所用的时间相同,已知两人每天共做 140 个零件, 若设甲每天做 x 个零件,则可列方程为

(A) $\frac{360}{x} = \frac{480}{140 - x}$	(B) $\frac{360}{140-x} = \frac{480}{x}$
(C) $\frac{360}{x} = 140 - \frac{480}{x}$	(D) $\frac{360}{x} = \frac{480}{140 + x}$

数学试卷第1页(共6页)


11 如图所示,为了在数轴上找到表示无理数 π 的点,小王同学制作了一个以 A 为圆 心, m 为半径的圆,并在此圆上标记一个点 B,将点 B 与原点重合.若让此圆在数 轴上向右滚动一周后,点 B 就是数轴上表示无理数 π 的点,则 m = _____.

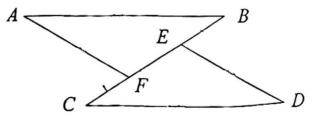

- 12. 已知命题"两个三角形全等,则它们的面积相等"为真命题,则这个命题的逆命 题为_____命题. (用"真","假"填空)
- 13. 如图,货架上水平摆放着九个外包装完全一样的盲盒, 每个盲盒内装有一件商品,装甲商品的盲盒有 5 个, 装乙商品的盲盒有 4 个,随机抽取一个盲盒,则抽到 _____种商品的可能性大. (用"甲","乙"填空)

14. 若实数 *a* 在数轴上的对应点的位置如图所示,则 $\sqrt{(2-a)^2}$ =_____

15. 如图,点O在直线 l 上,点A 在直线 l 外. 若直线 l 上有一点 P 使得 △APO 为等腰 三角形,则满足条件的点 P 位置有_____个.

16. 某学校计划租用客车接送 251 名学生和 5 名教师去博物馆,每辆车至少有 1 名教师,现有甲、乙、丙三种客车,它们的载客量和租金如下表所示:

	甲客车	乙客车	丙客车
载客量(单位:人/辆)	43	49	55
租金(单位:元/辆)	1350	1500	1600

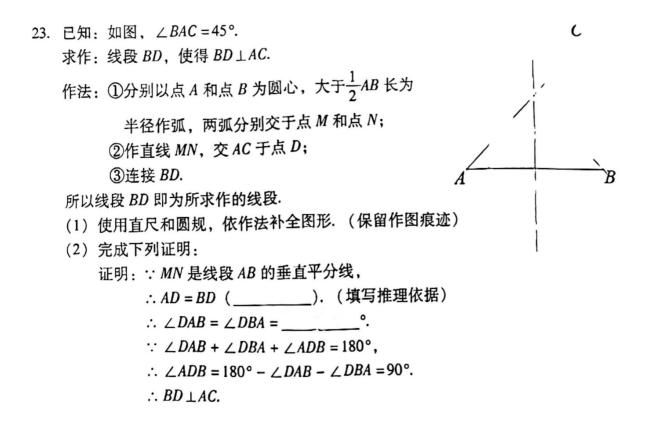

请写出一个满足乘坐需求的租车方案_____,若需要租车总费用最少,则租车 方案为_____.

三、解答题(本题共12道小题,第17~22题,每小题5分,第23~26题,每小题6 分,第27~28题,每小题7分,共68分)

17. 计算:
$$\left(\sqrt{8} - \frac{1}{\sqrt{2}}\right) \times \sqrt{2}$$
.

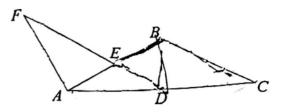
18. 计算: $\frac{1}{x} + \frac{2}{x+1}$.

19. 已知:如图, E, F 是线段 BC 上两点, AB = DC, AF = DE, BE = CF.
 求证: △ABF ≌ △DCE.



数学试卷第3页(共6页)

20. 计算: $(\sqrt{5}+2)(\sqrt{5}-2)+(\sqrt{3}-1)^2$.


21. 解方程:
$$\frac{2}{x} + \frac{x}{x-3} = 1$$
.

22. 先化简
$$\left(\frac{a}{a-1} - \frac{1}{a+1}\right) \div \frac{1}{a^2 - 1}$$
,再从 0,1,2 三个数中,选择一个合适的数作为 *a* 的值代入求值.

数学试卷第4页(共6页)

- 24. 第31 届世界大学生夏季运动会,于2023 年7月28日至8月8日在成都举办.上 海的学生小李一家想在此次运动会期间前往成都观赛,可供选择的交通工具有我国 自主知识产权的高铁和C919大型民航客机.已知民航客机的平均速度是高铁的3 倍、当路程均为1620千米时,搭乘民航客机会比高铁节省4小时,求民航客机和 高铁的平均速度.
- 25. 已知: △ABC 中, AB = BC = 6, D 为 AC 中 点, 过点 D 作 DE // BC, 交 AB 于点 E, 在 DE 的延长线上有一点 F, 连接 AF, 满足 AF = AD.

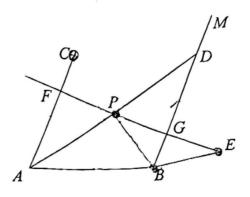
- (1) 求证: BE = DE.
- (2) 若 AC = 6 √3, 试判断 △ AEF 的形状, 并证明.

26. 阅读材料:

 $\sqrt{1}$ 和 $\sqrt{4}$ 为整数, 4-1=3=2×1+1; $\sqrt{4}$ 和 $\sqrt{9}$ 为整数, 9-4=5=2×2+1; $\sqrt{9}$ 和 $\sqrt{16}$ 为整数, 16-9=7=2×3+1;

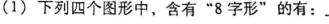
小明发现结论: 若 \sqrt{a} 和 \sqrt{b} 为相邻的两个整数,其中a < b,则有 $b - a = 2\sqrt{a} + 1$. 并给出了证明:根据题意,得

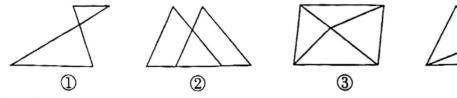
$$b-a=2\sqrt{a+1}$$

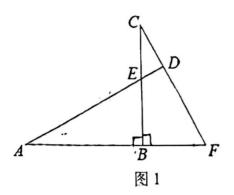

请根据以上材料, 解决以下问题:

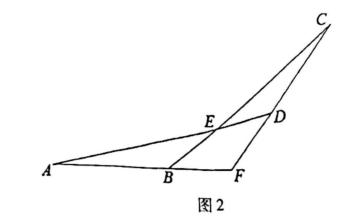
(1) 请补全小明的证明过程.

- (2) 若 \sqrt{a} 和 $\sqrt{a+11}$ 为两个相邻整数,则 a =_____.
- (3) 若 \sqrt{a} 和 $\sqrt{a+216}$ 为相差4的两个整数,求a的值.

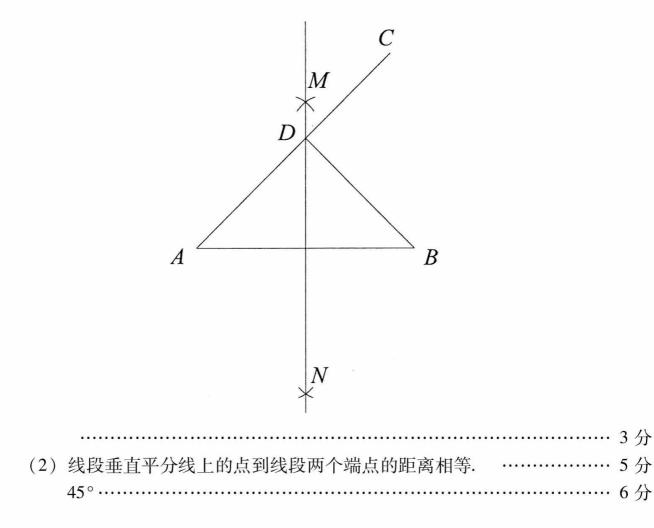

数学试卷第5页(共6页)


- 27. 已知:如图、线段 AB、点 P 是线段 AB 上方一动点,且 PA ⊥ PB,线段 AB 和线段 AC 关于直线 AP 对称,过点 B 作 BM // AC,与线段 AP 的延长线交于点 D,点 P 和 点 E 关于直线 BD 对称,作射线 EP 交 AC 于点 F,交 BD 于点 C.
 - (1) 当 PB = 3, AB = 5 时, 求 PD 的长.
 - (2) 请用等式表示线段 EF 与 PF 之间的数量关系,并证明.
 - (3) 当线段 EF 的长取最大值时, AB / FF 的低为_____


4


28. 给出如下定义:两条线段相交于一点(交点不与端点重合), 连接不同线段的两个端点,再连接另两个端点所得图形称为
"8 字形".如图,线段 AD 与 BC 交于点 O,连接 AB 和 CD, 所得图即为 "8 字形".

(2) 如图 1, AD 与 BC 交于点 E, 连接 AB 和 CD, AB 和 CD 的延长线交于点 F, 满足∠ABC = ∠ADC = α, AE = CF.
①当α=90°时,判断 BE 与 BF 的数量关系,并证明;
②如图 2, 当90° < α < 180°时, 求证: BE = BF.

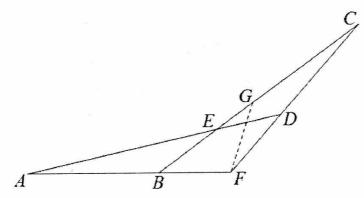

数学试卷第6页(共6页)

昌平区 2023—2024 学年第一学期初二年级期末质量抽测 数学试卷参考答案及评分标准 2024.1

一、选择题(本题共8道小题,每小题2分,共16分)

<u> </u>	无择题	(2	本题共8	道小 题,	每小	题2	分,	共16	分)				
Ļ	题号	5号 1 2 3 4		4	5		6	7	8				
1	答案		A	С	I	3	1	4	С		A	В	D
二、;	真空题	(7	本题共8	道小题,	每小	题2	分,	共16	分)				
题号	. 9	10		11	12	13 14		15		16			
答案	答案 0 $AC = AD$ (或 $\angle C = \angle D$,或 $\angle ABC = \angle ABD$)			$\frac{1}{2}$	假	甲	a -2	a-2 4 5 辆丙客车(答案不唯- 1 辆甲客车,1 辆乙客车 3 辆丙客车					
									小题 5	分	,第23	-26题,	每小题6
分,第 27、28题,每小题 7分,共 68分) 17. 解:原式 = $\sqrt{8} \times \sqrt{2} - \frac{1}{\sqrt{2}} \times \sqrt{2}$													
													4分
	=3												
18. 解: 原式 = $\frac{x+1}{x(x+1)} + \frac{2x}{x(x+1)}$													
19. 证明: $\because BE = CF$, $\therefore BE + EF = CF + EF$. 2 分 即 $BF = CE$. 在 $\triangle ABF$ 和 $\triangle DCE$ 中, AB = DC, AF = DE, BF = CE, $\therefore \triangle ABF \cong \triangle DCE$ (SSS)													
20. <i>f</i>	解:原					2 ×√	$\overline{3} \times 1$	+1 ²					4分
				$3 - 2\sqrt{3} + $									
		=	$=5-2\sqrt{3}$		•••••	•••••	••••	•••••		• • • • •		•••••	5分

将 a = 0 代入,得: $0^2 + 1 = 1$. (或将 a = 2 代入,得: $2^2 + 1 = 5$.) …… 5 分


24. 解:设高铁的平均速度为 x 千米/时,则民航客机的平均速度为 3x 千米/时.

	/31 •	·····································
		根据题意,得
		$\frac{1620}{3x} + 4 = \frac{1620}{x}.$ 3 $\%$
		解得
		x = 270.
		经检验, <i>x</i> = 270 是原方程的解, 且符合实际问题的意义
		当 $x = 270$ 时, $3x = 810$.
		答: 高铁平均速度为 270 千米/时, 民航平均速度为 810 千米/时 6 分
25	解.	(1) 证明: $:: \triangle ABC$ 中, $AB = BC$, 点 D 为 AC 中点,
20.)ur •	(1) 証91. : Ender +, nd be, x b 9 nd + x, ∴ BD 平分∠ABC
		$\therefore \angle ABD = \angle CBD.$
		$\therefore DE //BC$,
		$\therefore ∠BDE = ∠CBD.$
		$\therefore \angle ABD = \angle BDE.$
		∴ <i>BE</i> = <i>DE</i> . ······ 3 分
		(2) 判断: △AEF 为直角三角形
		证明: $:: \triangle ABC$ 中, $AB = BC$, 点 D 为 AC 中点,
		$\therefore BD \perp AC, \ \angle ADB = 90^{\circ}.$
		∵点 D 为 AC 中点, AC = 6 $\sqrt{3}$,
		_
		$\therefore AF = AD = \frac{1}{2}AC = 3\sqrt{3}.$
		$\therefore \ \angle ADB = 90^{\circ}, \ AD = 3\sqrt{3}, \ AB = 6,$
		$\therefore BD^2 + AD^2 = AB^2, \text{end} \ BD = \sqrt{AB^2 - AD^2} = 3.$
		$\therefore DE //BC, AB = BC,$
		$\therefore \ \angle ADE = \angle C = \angle BAC.$
		$\therefore AE = DE = BE = \frac{1}{2}AB = 3.$
		$\therefore DE = BE = BD.$
		∴ △BDE 是等边三角形
		$\therefore \ \angle DBE = \angle BED = 60^\circ = \angle AEF.$
		$\therefore ∠BAD = ∠ADF = 30^{\circ}$
		$:: 在 \triangle AEF$ 中,
		$\therefore \ \angle EAF = 180^\circ - \angle F - \angle AEF = 90^\circ.$
		∴ △AEF 为直角三角形.

26. 解:	(1)	平方; $(\sqrt{a}+1)^2$
	(2)	25 4分
	(3)	解:根据题意,得
		$\sqrt{a} + 4 = \sqrt{a + 216}$. 5 $\%$
		等式两边同时平方,得
		$(\sqrt{a}+4)^2 = (\sqrt{a+216})^2.$
		$(\sqrt{a})^2 + 2 \cdot \sqrt{a} \cdot 4 + 4^2 = a + 216.$
		$a + 8\sqrt{a} + 16 = a + 216.$
		$\sqrt{a} = 25.$
		<i>a</i> = 625 6 分
27. 解:	(1)	::线段 AB, AC 关于直线 AP 对称,
		$\therefore \angle CAP = \angle BAP.$
		$\therefore BD //AC$,
		$\therefore \ \angle CAP = \angle ADB.$
		$\therefore \ \angle BAD = \angle ADB.$
		$\therefore AB = AD.$
		$\therefore PA \perp PB$,
		∴ <i>BP</i> 为 <i>AD</i> 中线
		$\therefore AP = PD.$
		$\therefore \ \angle APB = 90^{\circ}, \ AB = 5, \ PB = 3,$
		$\therefore AP^2 + BP^2 = AB^2, \text{IP } AP = \sqrt{AB^2 - PB^2} = 4. \text{commutative} 2 \text{ for } AP = \sqrt{AB^2 - PB^2} = 4.$
	(2)	$\therefore PD = 4.$
	(2)	<i>EF</i> = <i>SFF</i> . 4 分 证明: :: 点 <i>P</i> 关于直线 <i>BD</i> 的对称点为 <i>E</i> ,
		: BD 是线段 PE 的垂直平分线.
		$\therefore PG = EG. \qquad 5 分$
		$在 \triangle APF$ 和 $\triangle DPG$ 中,
		$ \angle CAP = \angle ADB $,
		$\begin{cases} \angle CAP = \angle ADB, \\ AP = PD, \\ \angle APF = \angle DPG, \end{cases}$
		$\angle APF = \angle DPG$,
		$\therefore \triangle APF \cong \triangle DPG$ (ASA)
		$\therefore PF = PG = EG.$
		$\therefore EF = 3PF.$
	(3)	$\frac{AB}{EF} = \frac{2}{3}.$ 7 $\%$

②方法一:

证明:作辅助线,在 CB 上截取 CG = AB. 5 分

方法二:

证明:作辅助线,在 CB 上取一点 G,使得 $\angle CGF = \angle ABE$. …… 5分

$$C$$

$$G$$

$$G$$

$$D$$

$$A$$

$$B$$

$$F$$

$$ABE = DCGF + 0,$$

$$(\Delta ABE = \angle CGF, (\Delta AS)).$$

$$(\Delta ABE \cong \triangle CGF (AAS)).$$

$$(\Delta ABE \cong \triangle CGF (AAS)).$$

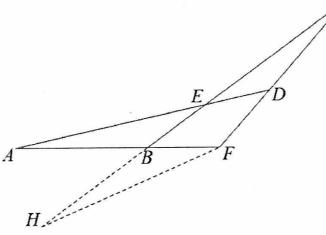
$$(\Delta ABE \cong \triangle CGF (AAS)).$$

$$(\Delta ABE \cong \triangle CGF, (\Delta AS)).$$

$$(\Delta ABE = \angle CGF, (\Delta AS)).$$

$$(\Delta ABE = \angle CGF, (\Delta AS)).$$

$$(\Delta ABE = \angle CGF, (\Delta AS)).$$


$$(\Delta BE = \Delta CGF, (\Delta CGF) (\Delta CGF).$$

$$(\Delta BE = \Delta CGF, (\Delta CGF) (\Delta CG$$

方法三:

证明:作辅助线,在CB的延长线上取一点H,使得FH=CF. ……5分

 C_{j}

:: FH = CF, $:: \angle C = \angle H = \angle A.$ $\overline{ABE} \ \overline{m} \ \triangle HBF \ \overline{n},$ $\left\{ \begin{array}{l} \angle ABE = \angle HBF, \\ \angle A = \angle HBF, \\ AE = FH, \end{array} \right.$ $:: \triangle ABE \cong \triangle HBF \ (AAS). \qquad \cdots \qquad 7 \ \cancel{f}$:: BE = BF.

注: 所有题选取其他思路酌情给分.