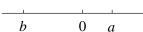
初一数学

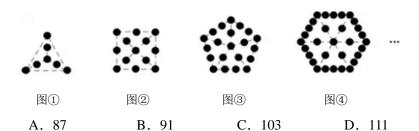
一. 选择题(共8个小题,每小题2分,共16分)第1-8题均有四个选项,符合题意的选项只 有一个.

- 1. 若a的相反数是-3,则a的值为()
- B. 2

- $2.-\frac{1}{3}$ 的绝对值是 ()
- A. $\frac{1}{3}$ B. 3 C. $-\frac{1}{3}$ D. -3

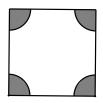


- 3.5G是第五代移动通信技术.5G网络理论下载速度可以达到每秒1300000 KB以上,这意味着 下载一部高清电影只需要1秒.将1300000用科学记数法表示应为(
- A. 13×10^5 B. 1.3×10^5 C. 1.3×10^6 D. 1.3×10^7


- 4. 下列各式中不正确的是()

- A. |-4| = 4 B. -|-6| = -|6| C. |-4| = |+4| D. -|-6| = +|-6|
- 5. 已知: a = -5, |a| = |b|, 则 b 的值等于 ()
 - A. +5 B. -5 C. 0

- 6. 有理数a满足: |-a|=a,则a的取值范围是()
 - A. a > 0
- B. a < 0 C. $a \le 0$ D. $a \ge 0$
- 7. 有理数 a, b 在数轴上的对应点如图所示,则下面式子中正确的是(
 - ① b < 0 < a; ② |b| < |a|; ③ ab > 0; ④ a b > a + b.



- A. ①②
- B. ①④ C. ②③ D. ③④
- 8. 如图,每个图案都由若干个"●"组成,其中第①个图案中有7个"●",第②个图案中有13个 "●", ...,则第⑨个图案中"●"的个数为(

二. 填空题(共8个小题,每题2分,共16分)

- 9. 写出一个大于-5的负整数是 .
- 10. "x 的 3 倍与 v 的平方的差"用代数式表示为 . . .
- 12. 用四舍五入法将 0.0586 精确到百分位, 所得到的近似数为
- 13. 如图,正方形广场边长为 a 米,广场的四个角都设计了一块半径为 r 米的 四分之一圆形花坛,请用代数式表示图中广场空地面积 平方米. (用含a、 π 和r的代数式表示).

- 14. 已知 A,B 是数轴上的两点,点 A 到点 B 的距离是 2,点 B 表示的数是 -1,则点 A 表示的数
- 15. 若|a-1|与 $(b+3)^2$ 互为相反数,则 $a \cdot b =$ _____.
- 16. 在有理数的原有运算法则的基础上我们补充定义新运算" \oplus "如下,当 $a \ge b$ 时, $a \oplus b = b^2$, 当 a < b 时 , $a \oplus b = a$.则 当 x = 2 时 , $(1 \oplus x) \cdot x - (3 \oplus x)$ 的 值 为 .("·"和"-"仍为有理数运算中的乘号和减号)
- 三. 解答题(共 68 分, 17-21 题每题 8 分, 22 题 5 分, 23 题 6 分, 24 题 5 分, 25-26 题每 题 6 分)
- 17. 计算: (1) (-6)+13-(-18)-20 (2) $18-6\div(-2)\times(-\frac{1}{3})$

18. 计算: (1)
$$\left(-\frac{3}{4} + \frac{7}{8} - \frac{1}{2}\right) \times 16$$

(2)
$$(-81) \div \frac{9}{2} \times \frac{2}{9} \div 2.25$$

19. 计算:
$$(1) - 5 \div \left(\frac{1}{3} - \frac{1}{7}\right)$$

(2)
$$-3^2 - (-3)^2 \times (-2) - [(-2) \times (-1)]^2$$

20. 计算: (1)
$$-2\frac{1}{2} - 2\frac{1}{2} \div (-2) \times (-\frac{2}{3})$$
 (2) $\left(-99\frac{22}{23}\right) \times \left(-69\right)$

(2)
$$\left(-99\frac{22}{23}\right) \times \left(-69\right)$$

21. 求下列代数式的值:

(1)
$$-\frac{x}{y} + 3y^2$$
, $\sharp = x = 1$, $y = -2$

(1)
$$-\frac{x}{y} + 3y^2$$
, $\sharp \oplus x = 1$, $y = -2$; (2) $(a-c)^2 + \frac{1}{4}b$, $\sharp \oplus a = 7, b = 3, c = 5$.

22.在数轴上表示下列各数,比较它们的大小并用"<"连接.

$$-1^4, -3\frac{1}{2}, 0, -|-2|, -(-4)$$

23.在杭州亚运会火炬传递启动仪式上,火炬传递路线从"涌金公园广场"开始,最后到达西湖十景之一的"平湖秋月".

右图为杭州站的火炬传递线路图. 按照图中路线,从"涌金公园广场"到"一公园"共安排 16 名火炬手跑完全程,平均每人传递里程为 48 米.以 48 米为基准,其中实际里程超过基准的米数记为正数,不足的记为负数,并将其称为里程波动值.下表记录了16 名火炬手中部分人的里程波动值.

棒次	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
里程 波动值	2	6	-5		3	-2	0	-6	5	5	-4	-5	-8		4	1

- (1) 第9棒火炬手的实际里程为 米;
- (2) 若第 4 棒火炬手的实际里程为 49 米.
 - ①第4棒火炬手的里程波动值为____;
 - ②第14棒火炬手的实际里程为_____米.

24.对于正整数 a,我们规定: 若 a 为奇数,则 f(a) = 3a + 1;若 a 为偶数,则 $f(a) = \frac{a}{2}$ 例如 $f(15) = 3 \times 15 + 1 = 46$, $f(10) = \frac{10}{2} = 5$.若 $a_1 = 8$, $a_2 = f(a_1)$, $a_3 = f(a_2)$, $a_4 = f(a_3)$,…,

依此规律进行下去,得到一列数 a_1 , a_2 , a_3 , a_4 , ..., a_n , ...(n为正整数),则:

- $(1) a_{3=}$;
- (2) 求 $a_1+a_2+a_3+a_4+...+a_{2024}$ 的值.

25. 综合与探究:

【概念学习】

现规定: 求若干个相同的有理数 (均不等于 0) 的商的运算叫做除方,比如 $2\div 2\div 2$, $(-3)\div (-3)\div (-3)\div (-3)$ 等,类比有理数的乘方,我们把 $2\div 2\div 2$ 写作 2^{\otimes} ,读作 "2 的圈 3 次方", $(-3)\div (-3)\div (-3)\div (-3)$ 写作 $(-3)^{\oplus}$,读作 " (-3) 的圈 4 次方",一般地把 $\frac{a\div a\div a\div \cdots \cdots \div a}{n \wedge a}$ $(a\neq 0)$ 写作 a^{\oplus} ,读作 " a 的圈 n 次方" .

【初步探究】

【深入思考】

我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?

除方
$$2^{\textcircled{4}} = 2 \div 2 \div 2 \div 2 = 2 \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \left(\frac{1}{2}\right)^2$$
 乘方幂的形式

(2)试一试: 仿照上面的算式, 把下列除方运算直接写成幂的形式:

$$(-3)^{\odot} =$$
______, $\left(\frac{1}{5}\right)^{\odot} =$ ______.

(3) 算一算:
$$12^2 \div \left(-\frac{1}{3}\right)^{\textcircled{6}} \times (-2)^{\textcircled{6}} - \left(-\frac{1}{3}\right)^{\textcircled{6}} \div 3^3$$
.

26. 定义:数轴上P,Q,M,N表示的数分别为P,Q,m,n.若点M到点P,Q中一个点的距离与点N到点P,Q中另一个点的距离之和等于点M与点N之间的距离,我们就称(M,N)是(P,Q)的调和点对.

例如,如图,点P,Q,M,N表示的数分别为-1,-4,-1.5,-3.

此时,QN = 1,MN = 1.5,因此,点P,Q,M,N满足QN + PM = MN,称 $\left(M,N\right)$ 是 $\left(P,Q\right)$ 调和点对.

请根据上述材料解决下面问题:

在数轴上点A, B 表示的数分别为a, b, 且a, b满足 $\left|a+4\right|+\left(b-8\right)^2=0$,

- (1) $a = ____, b = ____;$
- (2) 点 E , F , G , H 表示的数分别为 -5 , -3 , 3 , 7 , 其中可以组成 (A,B) 的调和点对的是______;
- (3)若点 P 从点 A 以每秒 4 个单位长度向右运动,同时点 Q 从点 B 以每秒 1 个单位长度向左运动,当点 Q 到达点 A 时,点 P ,Q 同时停止运动。设点 Q 的运动时间为 t 秒 (t>0) 。当 (P,Q) 为 (A,B) 的调和点对时,直接写出 t 的值。

