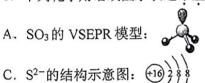
# 人大附中 2025 届高三 10 月检测练习

# 化学


命题人:毛娜

审题人: 蔡元博

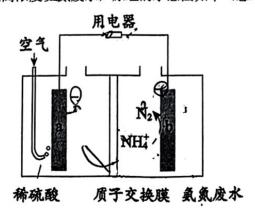
说明:本试卷19 道题,共100分;考试时间90分钟; 谐在答题卡上填写个人信息,并将 条形码贴在答题卡的相应位置上。

可能用到的相对原子质量: H-1 Li-7 C-12 O-16

- 一、选择题(本大题共14小题,每小题3分,共42分。在每小题所给出的四个选项中,只 有一项是符合题目要求的, 请将正确答案填涂在答题纸的相应位置上)
- 1. 下列化学用语或图示表达不正确的是
- A、SO₃的 VSEPR 模型:



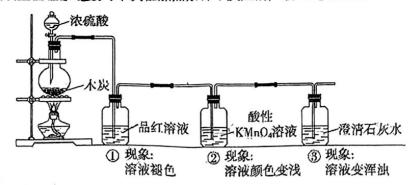
- B. 羟基的电子式: ·0:H
- D. 原子核内有 8 个中子的碳原子: <sup>14</sup>C
- 2. 近日, 我国首台中速大功率氨燃料发动机点火成功。下列关于氨燃料的说法不合理的是
- A. 氨易液化便于存储, 且液化时放热
- B. NH<sub>3</sub>分子间存在氢键,因此加热时很难分解
- C. NH3具有还原性,可以在 O2中燃烧
- D. 与柴油发动机相比, 氨燃料发动机可降低碳排放
- 3. 下列性质的比较,不能用元素周期律解释的是
- A. 非金属性: F>O>N
- B. 碱性: KOH > NaOH > LiOH
- C. 酸性: HClO<sub>4</sub> > H<sub>2</sub>SO<sub>3</sub> > H<sub>2</sub>SiO<sub>3</sub>
- D. 热稳定性: H<sub>2</sub>O > H<sub>2</sub>S > PH<sub>3</sub>
- 4. 常温下,下列各组离子在指定溶液中能大量共存的是
- A. pH=1 的溶液中: HCO, K+、Cl-、Na+
- B. 无色溶液中: NH<sup>+</sup>、K<sup>+</sup>、MnO<sub>4</sub>、NO<sub>3</sub>
- C. 含有 SO<sup>2-</sup>的溶液中: NO<sup>3</sup>、OH<sup>-</sup>、Na<sup>+</sup>、Ba<sup>2+</sup>
- D.  $c(OH^-)=10^{-2}$  mol/L 的溶液中: Na<sup>+</sup>、CO<sub>2</sub><sup>-</sup>、Cl<sup>-</sup>、K<sup>+</sup>
- 5. 下列离子方程式书写不正确的是
- A. 向 NaOH 溶液中通入过量 SO<sub>2</sub>: OH-+SO<sub>2</sub>=HSO<sub>3</sub>-
- B. 向 KI 溶液中通入少量 Cl<sub>2</sub>: 2I-+Cl<sub>2</sub>=2Cl-+l<sub>2</sub>
- C. 向 Ba(OH)2 溶液中滴加少量 NaHSO4溶液: Ba2++OH-+H++SO42-=BaSO4 + H2O
- D. 向 Ca(OH)<sub>2</sub> 溶液中滴加过量 NaHCO<sub>3</sub> 溶液: 2H++ CO<sub>3</sub><sup>2-</sup>+2OH-+ Ca<sup>2+</sup> = CaCO<sub>3</sub> + 2H<sub>2</sub>O




- 6. 已知 NA 是阿伏加德罗常数的值, 下列说法中正确的是
- A. 标准状况下, 22.4 L N₂中含有 7N<sub>A</sub>个中子
- B. 60g 富勒烯 (C60) 中含有 NA 个碳原子
- C. 1 mol K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>被还原为 Cr<sup>3+</sup>转移的电子数为 6N<sub>A</sub>
- D. 密闭容器中, 2 mol SO<sub>2</sub>和 1 mol O<sub>2</sub>催化反应后分子总数为 2N
- 7. 下列物质混合后,因发生氨化还原反应使溶液 pH 增大的是
- A. 向酸性 KMnO4溶液中加入 FeSO4溶液, 紫色褪去
- B. 向 NaHSO3溶液中加入 Ba(OH)2溶液,产生白色沉淀
- C. 向 BaCl<sub>2</sub> 溶液中先通入 SO<sub>2</sub>,后通入 O<sub>2</sub>,产生四色沉淀
- D. 向饱和 NaCl 溶液中先通入 NH3, 后通入 CO2, 产生白色沉淀
- 8. 实验室制备下列气体所选试剂、制备装置及收集方法均合理的是



| + |   |                 |                                                                  |   |      |      | <b>一</b> 水 |
|---|---|-----------------|------------------------------------------------------------------|---|------|------|------------|
| ; | a | b               | c                                                                | d | e    | f    |            |
|   |   | 气体              | 试剂                                                               |   | 制备装置 | 收集方法 |            |
|   | Α | CO <sub>2</sub> | 石灰石+稀H2SO4                                                       |   | С    | d    |            |
|   | В | NH <sub>3</sub> | NH <sub>4</sub> Cl + Ca(OH) <sub>2</sub>                         |   | Ъ    | f    |            |
|   | С | SO <sub>2</sub> | Na <sub>2</sub> SO <sub>3</sub> +浓H <sub>2</sub> SO <sub>4</sub> |   | С    | e    |            |
|   | D | Cl <sub>2</sub> | MnO <sub>2</sub> +浓盐酸                                            |   | a    | d    |            |

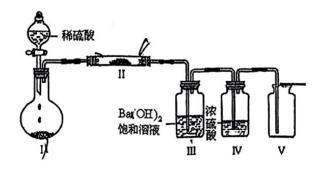

9. 燃料电池法可以处理高浓度氨氮废水,原理的示意图如下(忽略溶液体积的变化)。



## 下列说法不正确的是

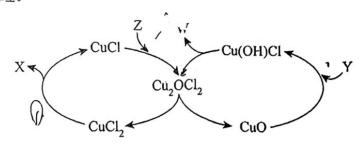
- A. H<sup>+</sup>通过质子交换膜向 a 极窒迁移
- B. 工作一段时间后, a 极室中稀硫酸的浓度增大
- C. 电极 b 的电极反应: 2NH;-6e-=N2↑+8H+
- D. 电池的总反应: 4NH;+3O2=2N2+6H2O+4H+

10. 用下图装置检验浓硫酸与水炭在加热条件下反应的产物 CO2和 SO2。




## 下列说法不正确的是

- A. ①中现象说明了产物中有 SO<sub>2</sub>
- B. ②中利明了 KMnO<sub>4</sub> 的氧化性
- C. 将②③对调也能达到实验目的
- D. 浓硫酸与木炭的反应: 2H<sub>2</sub>SO<sub>4</sub>(浓) + C ← CO<sub>2</sub>↑+ 2SO<sub>2</sub>↑+2H<sub>2</sub>O
- 11. CO<sub>2</sub>的资源化利用有利于实现"碳中和"。利用 CO<sub>2</sub>为原料可以合成新型可降解高分子
- P, 其合成路线如下。


已知: 反应①中无其他产物生成。·下列说法不正确的是

- A. CO2与X的化学计量比为1:2
- B. P 完全水解得到的产物的分子式和 Y 的分子式相同
- C. P 可以利用碳碳双键进一步交联形成网状结构
- D. Y通过碳碳双键的加聚反应生成的高分子难以降解
- 12. H、C、O、Na 四种元素之间(二种、三种或四种)可组成多种无机化合物,选用其中某些化合物,利用下图装置(夹持固定装置已略去)进行实验,装置 III 中产生白色沉淀,装置 V 中收集到一种无色气体。下列说法不正确的是



- A. 装置 I 中的化合物有多种可能
- B. 装置 II 中发生氧化还原反应
- C. 装置III中反应的离子方程式为 CO<sub>2</sub> + 2OH<sup>-</sup> + Ba<sup>2+</sup> = BaCO<sub>3</sub>↓ + H<sub>2</sub>O
- D. 装置V中收集的气体含有极性共价键, 是非极性分子

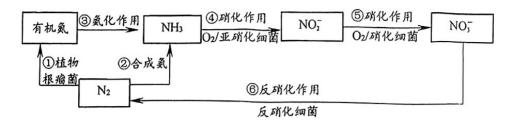
13. 可采用 Deacon 催化氧化法将工业副产物 HCl 制成  $Cl_2$ ,实现**氯资源的再利用。反应的** 热化学方程式:  $4HCl(g)+O_2(g)$   $\subseteq$   $2Cl_2(g)+2H_2O(g)$   $\Delta H=-114.4$  kJ·mol·l。下图所示为该法的一种催化机理。



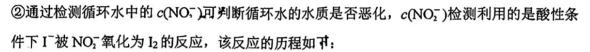


## 下列说法不正确的是

- A. Y为反应物 HCl, W 为生成物 H2O
- B. 反应制得 1mol Cl<sub>2</sub>, 须投入 2mol CuO
- C. 升高反应温度, HCl被 O2氧化制 Cl2的反应平衡常数减小
- D. 图中转化涉及的反应中有两个属于氧化还原反应
- 14. 某实验小组探究 KMnO4 溶液与 NH3 以及铵盐溶液的反应。


已知: MnO<sub>4</sub> 的氧化性随溶液酸性增强而增强; MnO<sub>2</sub> 为棕黑色, Mn<sup>2+</sup>接近无色。

| 实验 序号                                    |     | 试剂 a                                                                            | 实验现象             |  |  |
|------------------------------------------|-----|---------------------------------------------------------------------------------|------------------|--|--|
| lmL试剂a                                   | I   | 8 mol·L <sup>-1</sup> 氨水(pH≈13)                                                 | 紫色变浅,底部有棕黑色沉淀    |  |  |
| f                                        | П   | 0.1 mol·L-1 NaOH 溶液                                                             | 无明显变化            |  |  |
|                                          | III | 4 mol·L <sup>-1</sup> (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> 溶液 (pH≈6) | 紫色略变浅,底部有少量棕黑色沉淀 |  |  |
| <u> </u>                                 | IV  | 硫酸酸化的 4 mol·L-1<br>(NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> 溶液 (pH≈1)    | 紫色变浅             |  |  |
| 1 mL 0.01 mol·L <sup>-1</sup><br>KMnO₄溶液 | V   | 硫酸酸化的 4 mol·L <sup>-1</sup> NH4Cl<br>溶液(pH≈1)                                   | 紫色褪去             |  |  |


## 下列说法不正确的是

- A. 由 II 可知, pH=13 时, OH-不能还原 MnO,
- B. 由 I、II、III 可知,与 NH;相比,NH3 更易还原 MnO。
- C. 由 In、IV 可探究溶液 pH 对 NH;与 MnO、反应的影响
- D. 由 IV、V 可知, NH: 浓度降低, 其还原性增强

- 二、非选择题(本部分共5小题,共58分)
- 15. (10分) 自然界中的局部氮循环如下图。

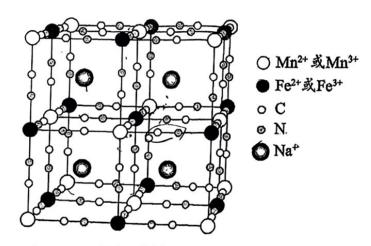


- (1) 上图各含氮物质的转化途径中,属于氮的固定的是\_\_\_\_(填数字序号)。
- (2) NH<sub>3</sub>是氮循环中的重要物质,工业合成氦反应的化学方程式为。
- (3) 某化工厂出现泄露, 大量每水进入循环水系统, 使循环水中含氯杀菌剂 (有效成分为
- Cl<sub>2</sub>)的杀菌效果降低、硝化作用增强,导致循环水的 pH 发生波动,最终造成设备腐蚀。
- ①下列有关氨对循环水影响的说法中,正确的是\_\_\_\_(填字母序号)。
  - a. 过量氨进入循环水后,水中 NOT和 NOT含量会升高
  - b. 过量氨进入循环水后,不会导致水体富营养化
  - c. 循环水 pH 的波动中, pH 的上升与氨水的碱性有关
  - d. 为减少氨对杀菌剂杀菌效果的影响,可以改用非氧化性杀菌剂



i. 
$$NO_1^- + 2H^+ = NO^+ + H_2O$$

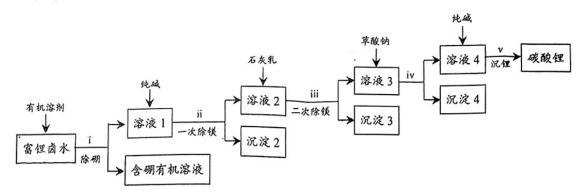
ii. ······


iii.  $20NI = I_2 + 2NO$ 

其中 ii 的离子方程式为\_\_\_\_\_。

(4)含NO√的废水可用二硫化亚铁(FeS₂)处理,在反硝化细菌的作用下发生以下反应, 请将离子方程式补充完整:




- 16.(10分)某钠离子电池以 NaClO<sub>4</sub>的碳酸丙烯酯溶液作电解质溶液, Na<sub>x</sub>[MnFe(CN)<sub>6</sub>]作正极材料, Na 作负极材料。
- (1) CO<sub>2</sub> 与环氧丙烷( ) 在一定条件下反应制得碳酸丙烯酯。
- ① CO<sub>2</sub>是\_\_\_(填"极性"或"非极性")分子。
- ② 环氧丙烷中, O原子的杂化轨道类型是 杂化。
- ③ 沸点: 环氧丙烷 CO<sub>2</sub> (填">"或"<")。
- (2) MnCl<sub>2</sub>溶液与 Na<sub>4</sub>[Fe(CN)<sub>6</sub>]溶液混合可制备 Na<sub>x</sub>[MnFe(CN)<sub>6</sub>]晶体。
- ① 一个基态 Mn 原子中的未成对电子数是 \_\_\_。
- ② CN<sup>-</sup>的性质与卤素离子相近,被称为拟卤离子,(CN)2被称为拟卤素。
  - i. (CN)₂与 H₂O 反应的生成物的结构式分别是 H—C≡N、\_\_\_\_。
  - ii. HCN 有酸性但乙炔无明显酸性,HCN 的酸性比乙炔的强的原因是\_\_\_\_。
- (3) 钠离子电池的正极材料 Na<sub>\*</sub>[MnFe(CN)<sub>6</sub>]在充、放电过程中某时刻的晶胞示意图如下。



- ①Nax[MnFe(CN)6]中存在的化学键有配位键、\_\_\_\_。
- ②该时刻的晶胞所示的  $Na_x[MnFe(CN)_6]$ 中, $x=_____$ 。



17. (10 分) 一种利用窘锂卤水(含Li<sup>+</sup>、Na<sup>+</sup>、Mg<sup>2+</sup>、Cl<sup>-</sup>、硼酸根等)制备碳酸锂**的**工艺如下:



已知:室温下相关物质的 Ksp 如下表。

| 化合物      | MgCO <sub>3</sub>    | Mg(OH) <sub>2</sub>   | CaC <sub>2</sub> O <sub>4</sub> | CaCO <sub>3</sub>    | Ca(OH) <sub>2</sub>  | Li <sub>2</sub> CO <sub>3</sub> |
|----------|----------------------|-----------------------|---------------------------------|----------------------|----------------------|---------------------------------|
| $K_{sp}$ | 6.8×10 <sup>-6</sup> | 5.6×10 <sup>-12</sup> | 2.3×10 <sup>-9</sup>            | 2.8×10 <sup>-9</sup> | 5.5×10 <sup>-6</sup> | 2.5×10 <sup>-2</sup>            |

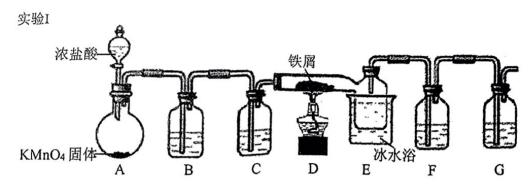
- (1) i中,操作的名称是\_\_\_\_。
- (2) ii可除去80%的iAg<sup>2+</sup>,该过程中生成iAfg<sub>2</sub>(OH)<sub>2</sub>CO<sub>2</sub>反应的离子方程式为\_\_\_\_\_。
- (3) iii中,得到的沉淀3的成分有\_\_\_\_。
- (4) 有人提出:可省略向溶液3中加入草酸钠这一步,该建议\_\_\_\_\_(填"可行"或"不可行"),理由是。
- (5) 一种测定碳酸锶产品纯度的方法如下:

步骤I. 取 a g Li<sub>2</sub>CO<sub>3</sub> 产品,加入  $c_1$  mol·L<sup>-1</sup>  $V_1$  mL H<sub>2</sub>SO<sub>4</sub> 标准溶液,固体完全溶解;步骤II. 加热溶液,缓缓煮沸一段时间后自然冷却至室温;

步骤 $\Pi$ . 以酚酞为指示剂,用 $c_2$  mol· $L^{-1}$  NaOH标准溶液滴定至终点,消耗溶液体积为 $V_2$  mL。

- ① 已知: 杂质不与H<sub>2</sub>SO<sub>4</sub>、NaOH溶液反应。该Li<sub>2</sub>CO<sub>3</sub>产品纯度为\_\_\_\_\_(写出计算式,用质量分数表示)。
- ② 步骤II的目的是\_\_\_\_\_\_; 若省略步骤II,直接进行步骤III,将导致测得的Li<sub>2</sub>CO<sub>3</sub> 产品纯度\_\_\_\_\_\_(填"偏高""偏低"或"无影响")。




18. (14分) 某兴趣小组模拟工业制取FeCl3,并对其性质进行探究。

资料: i. 无水 FeCla 易潮解, 加热易升华。

ii. Fe3+与 SO32-可以形成红色配离子。

#### (一) FeCl<sub>3</sub>的制取(夹持装置略)





- (1) A为氯气发生装置。A中的反应方程武是\_\_\_\_\_(锰被还原为Mn<sup>2+</sup>)。
- (2) 装置G中的NaOH 溶液用来吸收多余的氯气,请写出该反应的离子方程式
- (3) 装置F中的试剂是。

#### (二) FeCl3性质探究

将实验I制取的FeCl2固体配成0.1 mol/L FeCl3溶液,进行实验II和实验III。

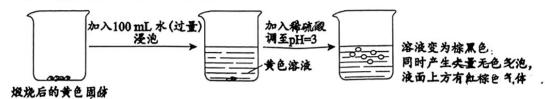
实验II: 将酸化的5 mL 0.1 mol/L FeCl<sub>3</sub>溶液与2 mL 0.1 mol/L Na<sub>2</sub>SO<sub>3</sub>溶液混合,得到红色溶液,一段时间后红色褪去。

(4)解释实验II中溶液先变红后褪色的原因\_\_\_\_\_。

|     | 操作                          | 序号 | 现象                       |
|-----|-----------------------------|----|--------------------------|
|     | 2 mL FeCh<br>溶液<br>蒸发、蒸干、灼烧 | а  | 蒸发时,试管内有白雾               |
| 实验Ⅲ |                             | b  | 灼烧时,导出的气体可以使NaBr<br>溶液变黄 |
|     |                             | c  | 最终,试管底部留有黑色固体            |

- (5) 结合化学方程式,解释a中的实验现象。
- (6) 小组成员对b中的现象进行探究。向得到的黄色溶液中加入苯,振荡静置,上层溶液呈黄色,取上层黄色溶液加入淀粉KI溶液,溶液变蓝。甲同学推测实验III灼烧过程中FeCl3分解产生了Cl2,乙同学认为需要排除FeCl3被苯萃取的影响,并通过实验证实了甲同学的推测,乙同学的验证过程及现象是\_\_\_\_\_。
- (7) 将c中黑色固体溶于浓盐酸,无气泡产生,小组同学判断黑色固体中含有正二价铁, 其理由是\_\_\_\_\_。

19. (14分) 某小组探究 K2Cr2O7的制备。


已知: i. CnO3 (绿色, 不溶于水)、Cr<sup>3+</sup> (绿色)、Cr(OH)3 (灰绿色, 不溶于水)、[Cr(NO<sub>2</sub>)<sub>6</sub>]<sup>3-</sup> (玫瑰红色)、Cr<sub>2</sub>O<sub>7</sub><sup>2</sup> (橙色)、CrO<sub>4</sub><sup>2-</sup> (黄色)

ii. HNO<sub>2</sub>是一种弱酸, 易分解: 3HNO<sub>2</sub> = 2NO ↑ + HNO<sub>3</sub> + H<sub>2</sub>O

将 7.60 g  $Cr_2O_3$  固体和 15.15 g  $KNO_3$  固体(物质的量之比为 1:3)与过量的  $K_2CO_3$  固体混合,高温煅烧得含  $K_2CrO_4$  的黄色固体,反应如下:

 $Cr_2O_3 + 3KNO_3 + 2K_2CO_3 \stackrel{商温}{=\!=\!=\!=} 2K_2CrO_4 + 2CO_2 \uparrow + 3KNO_2$ 。

- (1) KNO3 受熟分解转化为 KNO2, 反应的化学方程式是 \_\_\_\_\_。
- (2) K<sub>2</sub>CrO<sub>4</sub>转化为 K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, 进行实验I:



- ①加入 H<sub>2</sub>SO<sub>4</sub>,CrO<sub>4</sub><sup>2-</sup>转化为 Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup>反应的离子方程式是\_\_\_\_\_。
- ②无色气泡中的气体有。
- ③资料显示溶液变为棕黑色是  $Cr^{3+}$ 与  $Cr_2O_7^{2-}$ 混合所致。设计实验,取少量棕黑色溶液于试管中,逐滴加入 NaOH 溶液,生成灰绿色沉淀,溶液变为黄色,至不再生成沉淀时,静置,取上清液 (填操作和现象),证实溶液中存在  $Cr^{3+}$ 与  $Cr_2O_7^{2-}$ 。
- (3) 探究 Cr3+的来源

来源 1: \*\*\*\*\*\*

来源 2: 酸性环境中, $Cr_2O_7^2$ 与  $NO_7$ 发生氧化还原反应生成  $Cr^{3+}$ 。

- ①来源 1: 。
- ②进行实验II证实来源2成立,实验操作及现象如下:



| 实验操作                                                                                                                                              | 实验现象                                                                                                                               |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 送滴滴加 0.5 mol·L <sup>-1</sup> NaNO <sub>2</sub> 溶液<br>↓ 2 mL 0.5 mol·L <sup>-1</sup><br>K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> 溶液<br>(pH=3) | 溶液 由橙色逐渐变为棕黑色,进而变为绿色,过程中无红棕色气体产生。 继续加入 NaNO2 溶液,溶液变为玫瑰红色,加入 1 mL 1 mol·L <sup>-1</sup> H <sub>2</sub> SO <sub>4</sub> 溶液 后,溶液恢复绿色。 |  |  |  |  |

溶液由橙色变为绿色、绿色变为玫瑰红色的反应的离子方程式: \_\_\_\_、\_\_\_。

从平衡移动的角度解释溶液由玫瑰红色变为绿色的原因: 。

(4) 为避免 K<sub>2</sub>CrO<sub>4</sub> 转化为 K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> 的过程中产生 Cr<sup>3+</sup>, 进行实验III。

将煅烧后的黄色固体浸泡于 100 mL 水中,过滤后向滤液中加入醋酸溶液,调至 pH=5,溶液变为橙色。

实验Ⅲ中溶液的颜色与实验I中的不同的原因可能是 \_\_\_。

| 人大阪中 | 2025 | 届高三化学      | 10 | 日於测练习 |
|------|------|------------|----|-------|
| 八人即中 | 2025 | 一日   14.14 | 10 | 日和爱练  |

\_\_\_\_\_本页为草稿纸-

