北京市和平街第一中学高三数学月考试卷(2024.9.29)

(考试时间 120 分钟, 满分 150 分)

一、选择题(共10小题,每小题4分,共40分)

1. 设全集 U=R,集合 $A = \{x \mid x < 2\}, B = \{x \mid x < 1\}$ 则集合(C_UA) ∪ B=

A $(-\infty,2)$ B $[2,+\infty]$ C (1,2) D $(-\infty,1)\cup[2,+\infty]$

2.设 $x \in \mathbb{R}$, 向量a = (1,2), b = (x,1), 且 $a \perp b$, 则|a+b| =

A. $\sqrt{5}$ B. $2\sqrt{5}$ C. $\sqrt{10}$ D. 10

3.若复数 $z=\frac{2+i}{a+i}$ 的实部与虚部相等,则实数 a 的值为

A. -3 B. -1 C. 1 D. 3

4.在下列函数中,值域为R的偶函数是

A.
$$f(x) = \sqrt{x}$$

$$B. f(x) = ln|x$$

A.
$$f(x) = \sqrt{x}$$
 B. $f(x) = ln|x|$ C. $f(x) = 2^{x} + 2^{-x}$ D. $f(x) = xcosx$

D.
$$f(x) = x\cos x$$

5.《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色 党徽图案的红旗,通用规格有五种.这五种规格党旗的长 a₁,a₂,a₃,a₄,a₅(单位:cm)成等差数列, 对应的宽为 b_1,b_2,b_3,b_4,b_5 (单位: cm),且长与宽之比都相等,已知 $a_1 = 288$, $a_5 = 96$, $b_1 = 192$, 则 $b_3 =$

A. 64 B. 96 C. 128 D. 160

6.在 $\triangle ABC$ 中,AD为BC边上的中线,若E为AD的中点,则 \overline{CE} =()

A.
$$-\frac{1}{4}\overrightarrow{AB} - \frac{5}{4}\overrightarrow{AC}$$

B.
$$-\frac{1}{4}\overrightarrow{AB} - \frac{3}{4}\overrightarrow{AC}$$

C.
$$\frac{1}{4}\overrightarrow{AB} - \frac{5}{4}\overrightarrow{AC}$$

D.
$$\frac{1}{4}\overrightarrow{AB} - \frac{3}{4}\overrightarrow{AC}$$

7. 已知向量 \overrightarrow{a} , \overrightarrow{b} 满足 $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right| = 1$,且其夹角为 θ ,则" $\left|\overrightarrow{a} - \overrightarrow{b}\right| > 1$ "是" $\theta \in (\frac{\pi}{3},\pi]$ "的

A 充分不必要条件

B 必要不充分条件

C 充分必要条件

D 既不充分也不必要条件

8. 对于定义在**R**上的函数 y = f(x), 若存在非零实数 x_0 , 使函数 y = f(x) 在 $(-\infty, x_0)$ 和 $(x_0,+\infty)$ 上均有零点,则称 x_0 为函数 y=f(x) 的一个"折点". 下列四个函数存在"折点" 的是

A
$$f(x) = 3^{|x-1|} + 2$$

B
$$f(x) = \lg(|x| + 2021)$$

$$C \quad f(x) = \frac{x^3}{3} - x - 1$$

$$D \quad f(x) = x^2 - 2mx - 1$$

9. 把液体 A 放在冷空气中冷却,如果液体 A 原来的温度是 θ_0° C, 空气的温度是 θ_0° C,则 t min 后液体 A 的温度 θ °C 可由公式 $\theta = \theta_0 + (\theta_1 - \theta_0)e^{-0.3t}$ 求得. 把温度是 62 °C 的液体 A 放在 15 °C 的空气中冷却,液体 A 的温度冷却到 51° C 和 27° C 所用时间分别为 t_1 \min , t_2 \min , 则 t_2 $-t_1$ 的 值约为 (参考数据 ln3≈1.10)

- A 2.7 B 3.7 C 4.7 D 5.7

10. 已知函数 $f(x) = \begin{cases} 0, x < 1 \\ \ln x, x \ge 1 \end{cases}$,若不等式 $f(x) \le |x - k|$ 对任意的 $x \in R$ 恒成立,则实数 k

的取值范围是()

$$A.(-\infty,1]$$
 $B.[1,\infty)$ $C.[0,1)$ $D.(-1,0]$

二、填空题(每小题5分,共25分)

- 11. 函数 $f(x) = \frac{1}{\lg(x+1)} + \sqrt{2-x}$ 的定义域为______.
- 12. 已知 S_n 为递增等比数列 $\{a_n\}$ 的前n项和,其中 a_1 , $\frac{9}{2}$, a_4 成等差数列,且 $a_2 \cdot a_3 = 8$,则 $S_5 =$.
- 13. 边长为 2 的正方形 ABCD 中,点 P 满足 $\overrightarrow{AP} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right)$,则 $\left| \overrightarrow{PD} \right| = _______$; 若点 H是线段 AP 上的动点,则 $\overrightarrow{AH} \cdot \overrightarrow{HD}$ 的取值范围是_____.
- 14. 已知函数 $f(x) = \begin{cases} x^3, x \ge a, \\ -x^2 + 2a.x < a. \end{cases}$ 若 f(x) 在 **R** 上不具有单调性,则 a 的取值范围

15.已知等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,且 $S_{2023} < S_{2024} < S_{2022}$.数列 $\{\frac{1}{a_n a_{n+1}}\}$ 的前 n 项和为 T_n .

给出下列四个结论:

①
$$a_{2023} < 0$$
;

③使 $S_n < 0$ 成立的 n 的最大值为 4048; ④当 n = 2023 时, T_n 取得最小值.

其中所有正确结论的序号是

三、解答题(共6小题,共85分)

- 16. (本小题 14 分) 已知函数 $f(x) = \sin x(\sqrt{3}\cos x + \sin x) \frac{1}{2}$.
 - (I) 求 f(x) 的单调递增区间;

(II) 令
$$g(x) = af(x) + b, x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$$
, 其中 $a > 0$. 若 $g(x)$ 的值域为 [2,5],求 $a \to b$ 的值.

- 17. (本小题 13 分) 已知等比数列 $\{a_n\}$ 为递增数列,其前 n 项和为 S_n , $a_2 = 9$, $S_3 = 39$.
 - (I) 求数列 $\{a_n\}$ 的通项公式;
 - (II) 若数列 $\{a_n b_n\}$ 是首项为1,公差为3的等差数列,求数列 $\{b_n\}$ 的通项公式及前n项 和 T_n .
- 18. (本小题 13 分) 在 $\triangle ABC$ 中, c=2 , $C=30^{\circ}$. 再从条件①、条件②、条件③这三 个条件中选择一个作为已知,使其能够确定唯一的三角形,求:
 - (I) *a* 的值;
 - (Ⅱ) △ABC的面积.

条件①: $2b = \sqrt{3}a$;

条件②: $A = 45^{\circ}$;

条件③: $b = 2\sqrt{3}$.

注:如果选择多个条件分别解答,按第一个解答计分.

- 19. (本小题 15 分) 某市 A , B 两所中学的学生组队参加信息联赛, A 中学推荐了 3 名 男生、 2 名女生。 B 中学推荐了 3 名男生、 4 名女生。 两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取 3 人、女生中随机抽取 3 人组成代表队参赛.
- (I) 求 A 中学至少有1名学生入选代表队的概率;
- (II) 设X表示A中学参赛的男生人数,求X的分布列和数学期望:
- (III) 已知 3 名男生的比赛成绩分别为 76,80,84, 3 名女生的比赛成绩分别为 77,a ($a \in \mathbb{N}^*$),81,若 3 名男生的比赛成绩的方差大于 3 名女生的比赛成绩的方差,写出a的取值范围(不要求过程).

20 (本小题 15 分)

已知函数 $f(x) = ax^2 - e^x$, 设 h(x) = f'(x).

- (I) 若 $a = \frac{e}{2}$, 求 h(x) 的单调区间;
- (II) 若 f(x) 在区间 (0,+∞) 上存在极小值 m,
 - (i) 求a的取值范围;
 - (ii) 证明: m > -a.

21 (本小题 15 分)

已知无穷数列 $\{a_n\}$,给出以下定义:

对于任意的 $n \in \mathbb{N}^*$, 都有 $a_n + a_{n+2} \ge 2a_{n+1}$, 则称数列 $\{a_n\}$ 为 " \mathbf{T} 数列";特别地,对于任意的 $n \in \mathbb{N}^*$, 都有 $a_n + a_{n+2} > 2a_{n+1}$, 则称数列 $\{a_n\}$ 为 "严格 \mathbf{T} 数列".

- (I) 已知数列 $\{a_n\}$, $\{b_n\}$ 的前 n 项和分别为 A_n, B_n ,且 $a_n=2n-1$, $b_n=-2^{n-1}$, 试判 断数列 $\{A_n\}$, 数列 $\{B_n\}$ 是否为 " \mathbf{T} 数列",并说明理由;
- (II) 证明:数列 $\{a_n\}$ 为"**T**数列"的充要条件是"对于任意的 $k, m, n \in \mathbb{N}^*$,当k < m < n时,有 $(n-m)a_k + (m-k)a_n \ge (n-k)a_m$ ";
- (III) 已知数列 $\{b_n\}$ 为"严格 **T** 数列",且任意的 $n \in \mathbb{N}^*$, $b_n \in \mathbb{Z}$, $b_1 = -8$, $b_{128} = -8$. 求数列 $\{b_n\}$ 的最小项的最大值.