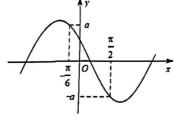
	统统	练3	
一、选择题 共 10 小	颐,每小颐4分,	共 40 分。在每小	题列出的四个选项中,
选出符合题目要	求的一项。		
(1) 已知集合 A={x	$-1 < x < 1$, $B = \{x \mid$	0 <x<2},则au< td=""><td><i>B</i> =</td></x<2},则au<>	<i>B</i> =
(A) $\{x \mid -1 < x < x < x \mid -1 < x < x < x < x < x < x < x < x < x < $	2)	(B) $\{x \mid -1 < x < x < x < x < x < x < x < x < x < $	2}
(C) $\{x \mid 0 \le x < 1\}$	ł	(D) $\{x \mid 0 \le x \le 1\}$	
(2) 若复数z 湖足(1	-i)·z=2,则z=		北京
(A) -1-i		(B) -1+i	22.42.00
(C) 1-i		(D) 1+i	
(3) 已知实数 a.b 满	足aゝb,则下列不	等式中正确的是	
(A) $ a > b$	(B) $a > b $	(C) $a^2 > ab$	(D) $ab > b^2$
(4) 已知 $a=2^{\frac{1}{3}}$, b	$= \log_2 \frac{1}{3}, c = \log_{\frac{1}{2}}$	$\frac{1}{3}$,则	
(A) $a>b>c$	(B) $a>c>b$	(C) $c>a>0$	(D) c>b>a
(5) 已知函数 f(x)=	$\log_1 x - x^2 + 2x - 1,$	则不等式 $f(x) > 0$	的解集为
(A) (I.4)	(B	(0,1) ∪ (4,+∞)	
(C) (1,2)	(E)) (0,1)∪(2,+∞)	
(6) 若 P 是△ABC 内	可部或边上的一个	动点,且 $\overline{AP} = x\overline{A}$	$\overline{B} + y\overline{AC}$,则 xy 的最大值
是			
(A) $\frac{1}{4}$	(B) $\frac{1}{2}$	(C) 1	(D) 2
(7) 无穷等差数列 {	a_n }的前 n 项和为 S	c,,公差为 d,贝	则"S,有最大值"是"d<0"
ស			
(A) 充分而不必	要条件	(B) 必要而	不充分条件
(C) 充分必要条	·件	(D) 既不充	分也不必要条件

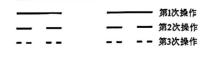
(8) 已知函数 $y = A \sin(\omega x + \varphi)$ 的部分图象如图所示,将该函数的图象向左平移 t(t>0) 个单位长度,得到函数 y=f(x) 的图象.若函数 y=f(x) 为奇函数,则 t的最小值是



(9) 我们可以用下面的方法在线段上构造出一个特殊的点集:如图,取一条长 度为1的线段,第1次操作,将该线段三等分,去掉中间一段,留下两段: 第2次操作,将留下的两段分别三等分,各去掉中间一段,留下四段;按 照这种规律一直操作下去. 若经过 n 次这样的操作后, 去掉的所有线段的 长度总和大于 $\frac{99}{100}$,则n的最小值为

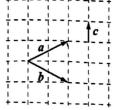
(参考数据: lg2≈0.301, lg3≈0.477)

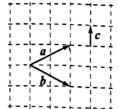
- (C) 11
- (D) 12



- (10) 若函数 $f(x) = \begin{cases} xe^x, x \le 0 \\ ax^2 2x, x > 0 \end{cases}$ 的值域为 $[-\frac{1}{e}, +\infty)$,则实数 a 的取值范围是

- (A) (0, e) (B) $(e, +\infty)$ (C) (0, e] (D) $[e, +\infty)$
- 二、填空题 共5道小题,每小题5分,共25分.
 - (11) 已知 $\tan(\theta \frac{\pi}{4}) = 2$,则 $\tan \theta =$ _____
 - (12) 在平面直角坐标系 xOy 中,角 α 与角 β 均以 Ox 为始边,它们的终边关于 直线y=x 对称,若 $\sin \alpha = \frac{3}{5}$,则 $\cos \beta =$ _____.
- (13)已知向量 a,b,c 在正方形网格中的位置如图所 示. 若网格纸上小正方形的边长为1,则 $(a+b)\cdot c = \underline{\hspace{1cm}}; \quad a\cdot b = \underline{\hspace{1cm}}.$





- (14) 若函数 $f(x) = \sin(\omega x + \frac{\pi}{6})(\omega > 0)$ 和 $g(x) = \cos^2(x + \varphi) \sin^2(x + \varphi)$ 的图象的对称中心完全重合,则 $\omega = ______; g(\frac{\pi}{6}) = ______.$
- (15) 已知各项均不为零的数列 $\{a_n\}$,其前n项和是 S_n , $a_1 = a$,且 $S_n = a_n a_{n+1}$ $(n=1,2,\cdots)$. 给出如下结论:
 - ① $a_2 = 1$;
 - ②{a_n}为递增数列;
 - ③若 $\forall n \in \mathbb{N}^*$, $a_{n+1} > a_n$,则 a 的取值范围是(0,1);
 - ④ $\exists m \in \mathbb{N}^*$,使得当 k > m 时,总有 $\frac{a_{2k}}{a_{2k-1}} < 1 + e^{-10}$. 其中,所有正确结论的序号是

- 三、解答题共 6 道小题, 共 85 分。解答应写出文字说明、演算步骤或证明过程。 (16) (本小题 14 分) 已知 $\{a_n\}$ 是等差数列,满足 $a_1=3$, $a_4=12$, 数列 $\{b_n\}$ 满足 $b_1=4$, $b_4=20$,且 $\{b_n-a_n\}$ 为等比数列.
 - (I) 求数列 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式;
 - (II) 求数列 $\{b_{2n}\}$ 的前n项和.
- (17) (本小题 14 分) 已知函数 $f(x) = \sin \omega x \cos \varphi + \cos \omega x \sin \varphi$ ($\omega > 0$, $|\varphi| < \frac{\pi}{2}$) 在区间 $[-\frac{\pi}{3}, \frac{2\pi}{3}]$ 上单调递增, $f(\frac{2\pi}{3}) = 1$,请从条件①、条件②、条件③ 这三个条件中选择一个作为已知,使函数 f(x) 唯一确定。

条件 ①:
$$f(\frac{\pi}{3}) = \sqrt{2}$$
;

条件②:
$$f(-\frac{\pi}{3}) = -1$$
;

条件③: f(x)在区间 $\left[-\frac{\pi}{2}, -\frac{\pi}{3}\right]$ 上单调递减.

- (I) 求 ω, φ 的值;
- (II) 若函数f(x)在区间(0,t)内有且仅有 1 个极大值点,求t的取值范围。

注:如果选择的条件不符合要求,第(II)问得0分;如果选择多个符合要求的条件分别解答。按第一个解答计分。

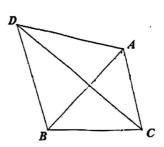
第3页 共4页

(18) (本小题 14 分)

如图, $\triangle ABD$ 为正三角形, AC//DB, AC=4

$$\cos \angle ABC = \frac{\sqrt{21}}{7}.$$

- (I) 求 sin ∠ACB 的值;
- (II) 求AB, CD的长.



- (19) (本小题 14 分) 已知函数 $f(x) = \frac{3-2x}{x^2+a}$.
 - (I) 若a=-4, 求f(x) 的单调区间;
 - (II) 若 f(x) 在 x = -1 处取得极值, 求 f(x) 的单调区间, 并求其最大值与最小值.
- (20) (本小题 14 分) 设l为曲线 $C: y = (x-2)e^x dx = -1$ 处的切线.
 - (I) 求1的方程;
 - (II) 判断曲线C与直线I的公共点个数,并证明.

(21) (本小题 15 分)

设 m 为正整数,数列 a_1,a_2,\cdots,a_{4m+2} 是公差不为 0 的等差数列,若从中删去两项 a_1 和 a_2 (i < j) 后剩余的 4m 项可被平均分为m 组,且每组的 4 个数都能构成等差数列,则称数列 a_1,a_2,\cdots,a_{4m+2} 是 (i,j) 一可分数列.

- (I) 写出所有的(i,j), $1 \le i < j \le 6$, 使数列 a_1, a_2, \dots, a_6 是(i,j)-可分数列;
- (II) 当 $m \ge 3$ 时,证明:数列 $a_1, a_2, \dots, a_{4m+2}$ 是(2,13)-可分数列;
- (Ⅲ) 证明: 使数列 $a_1, a_2, \dots, a_{4m+2}$ 是(i, j) 一可分数列的有序数对(i, j) 至少有 $m^2 + m + 1$ 个.

一、选择题 共 10 小题, 每小题 4 分, 共 40 分。在每小题列出的四个选项 中,选出符合题目要求的一项。 (1) 已知集合 $A = \{x \mid -1 < x < 1\}$, $B = \{x \mid 0 \le x \le 2\}$,则 $A \cup B = \{x \mid 0 \le x \le 2\}$, (A) $\{x \mid -1 < x < 2\}$ (B) $\{x \mid -1 < x \le 2\}$ (D) $\{x | 0 \le x \le 2\}$ (C) $\{x | 0 \le x < 1\}$ (2) 若复数 z 满足(1-i)·z=2,则 z= (A) -1-i(B) -1+i(D) 1+i (C) 1-i (3) 已知实数a,b满足a>b,则下列不等式中正确的是 (A) |a| > b (B) a > |b| (C) $a^2 > ab$ (D) $ab > b^2$ (4) 己知 $a = 2^{-\frac{1}{3}}$, $b = \log_2 \frac{1}{3}$, $c = \log_{\frac{1}{2}} \frac{1}{3}$, 则() (A) a > b > c (B) a > c > b (C) c > a > b (D) c > b > a(5) 已知函数 $f(x) = \log_2 x - x^2 + 2x - 1$,则不等式 f(x) > 0 的解集为 (A) (1,4)(B) $(0,1) \cup (4,+\infty)$ (C) (1,2) (D) $(0,1) \cup (2,+\infty)$ (6) 若 P 是 $\triangle ABC$ 内部或边上的一个动点,且 $\overrightarrow{AP} = x\overrightarrow{AB} + y\overrightarrow{AC}$,则xy 的最大值 是 (B) $\frac{1}{2}$ (C) 1 (D) 2 (7) 无穷等差数列 $\{a_n\}$ 的前n项和为 S_n ,公差为d,则" S_n 有最大值"是"d<0"的 (A) 充分而不必要条件 (B) 必要而不充分条件

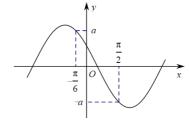
(D) 既不充分也不必要条件

(C) 充分必要条件

- (8) 已知函数 $y = A \sin(\omega x + \varphi)$ 的部分图象如图所示,将该函数的图象向左平移 t(t > 0) 个单位长度,得到函数 y = f(x) 的图象.若函数 y = f(x) 为奇函数,则 t的最小值是
 - $(A) \frac{\pi}{12}$

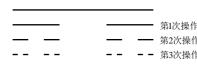
(C) $\frac{\pi}{4}$

(D) $\frac{\pi}{2}$



(9) 我们可以用下面的方法在线段上构造出一个特殊的点集:如图,取一条长 度为 1 的线段, 第 1 次操作,将该线段三等分,去掉中间一段,留下两 段;第2次操作,将留下的两段分别三等分,各去掉中间一段,留下四段; 按照这种规律一直操作下去. 若经过n次这样的操作后, 去掉的所有线段 的长度总和大于 $\frac{99}{100}$,则n的最小值为

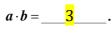
(参考数据: lg2≈0.301, lg3≈0.477)

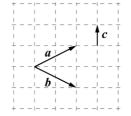


- (A) 9
- (B) 10
- (C) 11
- (D) 12
- (10) 若函数 $f(x) = \begin{cases} xe^x, x \le 0 \\ ax^2 2x, x > 0 \end{cases}$ 的值域为 $[-\frac{1}{e}, +\infty)$,则实数 a 的取值范围是

()

- (A) (0, e) (B) $(e, +\infty)$ (C) (0, e]
- (D) $[e, +\infty)$
- 二、填空题 共 5 道小题,每小题 5 分,共 25 分.
- (12) 在平面直角坐标系 xOy 中,角 α 与角 β 均以 Ox 为始边,它们的终边关于 直线 y=x 对称,若 $\sin \alpha = \frac{3}{5}$,则 $\cos \beta =$ ______.
- (13) 已知向量a,b,c 在正方形网格中的位置如图所示. 若网格纸上小正方形的





- (14) 若函数 $f(x) = \sin(\omega x + \frac{\pi}{6})(\omega > 0)$ 和 $g(x) = \cos^2(x + \varphi) \sin^2(x + \varphi)$ 的图象的对称中心完全重合,则 $\omega = \underline{\qquad 2} \qquad ; \quad g(\frac{\pi}{6}) = \underline{\qquad \pm 1} \qquad .$
- (15) 已知各项均不为零的数列 $\{a_n\}$,其前n项和是 S_n , $a_1 = a$,且 $S_n = a_n a_{n+1}$ ($n = 1, 2, \cdots$). 给出如下结论:
 - ① $a_2 = 1$;
 - ②{a_n}为递增数列;
 - ③若 $\forall n \in \mathbb{N}^*$, $a_{n+1} > a_n$, 则 a 的取值范围是 (0,1);
 - ④ $\exists m \in \mathbb{N}^*$,使得当 k > m 时,总有 $\frac{a_{2k}}{a_{2k-1}} < 1 + e^{-10}$. 其中,所有正确结论的序号是______. ①③④

- 三、解答题 共 6 道小题, 共 85 分。解答应写出文字说明、演算步骤或证明过程。
- (16) (本小题 14 分) 已知 $\{a_n\}$ 是等差数列,满足 $a_1=3$, $a_4=12$, 数列 $\{b_n\}$ 满足 $b_1=4$, $b_4=20$,且 $\{b_n-a_n\}$ 为等比数列.
 - (I) 求数列{ a_n }和{ b_n }的通项公式;
 - (II) 求数列 $\{b_{2n}\}$ 的前n项和.

 \mathbf{M} :(I) 设等差数列 $\{a_n\}$ 的公差为d, 由题意得

$$d = \frac{a_4 - a_1}{3} = \frac{12 - 3}{3} = 3.$$

所以 $a_n = a_1 + (n-1)d = 3n \ (n = 1, 2, \dots)$.

设等比数列 $\{b_n - a_n\}$ 的公比为q,由题意得

$$q^3 = \frac{b_4 - a_4}{b_1 - a_1} = \frac{20 - 12}{4 - 3} = 8$$
, 解得 $q = 2$.

所以
$$b_n - a_n = (b_1 - a_1)q^{n-1} = 2^{n-1}$$
.

从而
$$b_n = 3n + 2^{n-1} \quad (n = 1, 2, \dots)$$
.

(II) 由(I)知 $b_{2n} = 6n + 2^{2n-1} (n = 1, 2, \dots)$.

数列 $\{6n\}$ 的前n项和为3n(n+1),数列 $\{2^{2n-1}\}$ 的前n项和为 $2\times\frac{4^n-1}{4-1}=\frac{2}{3}(4^n-1)$.

所以,数列 $\{b_{2n}\}$ 的前n项和为 $3n(n+1)+\frac{2}{3}(4^n-1)$. 6分第3页 共8页

(17) (本小题 14 分) 已知函数 $f(x) = \sin \omega x \cos \varphi + \cos \omega x \sin \varphi$ ($\omega > 0, |\varphi| < <math>\frac{\pi}{2}$) 在区间 $[-\frac{\pi}{3}, \frac{2\pi}{3}]$ 上单调递增, $f(\frac{2\pi}{3}) = 1$,请从条件①、条件②、条件③ 这三个条件中选择一个作为已知,使函数 f(x) 唯一确定.

条件 ①:
$$f(\frac{\pi}{3}) = \sqrt{2}$$
;

条件②:
$$f(-\frac{\pi}{3}) = -1$$
;

条件③: f(x)在区间 $\left[-\frac{\pi}{2}, -\frac{\pi}{3}\right]$ 上单调递减.

- (I) 求 ω , φ 的值;
- (II) 若函数f(x)在区间(0,t)内有且仅有1个极大值点,求t的取值范围.

注:如果选择的条件不符合要求,第(II)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.

解:(I)选择条件②: $f(-\frac{\pi}{3}) = -1$.

因为 $f(x) = \sin(\omega x + \varphi)$,所以f(x)的最小值为-1,最大值为1,

又因为
$$f(x)$$
在区间 $[-\frac{\pi}{3}, \frac{2\pi}{3}]$ 上单调递增,且 $f(-\frac{\pi}{3}) = -1$, $f(\frac{2\pi}{3}) = 1$,

所以由三角函数的性质得 $\frac{T}{2} = \frac{2\pi}{3} + \frac{\pi}{3} = \pi$, 故 $T = 2\pi$.

因为
$$\omega > 0$$
,所以 $\omega = \frac{2\pi}{T} = 1$, $f(x) = \sin(x + \varphi)$.

曲
$$\sin(-\frac{\pi}{3} + \varphi) = -1$$
, 得 $\varphi = 2k\pi - \frac{\pi}{6} (k \in \mathbb{Z})$.

又因为
$$|\varphi| < \frac{\pi}{2}$$
,所以 $\varphi = -\frac{\pi}{6}$.

<mark>10 分</mark>

选择条件③: f(x)在区间 $\left[-\frac{\pi}{2}, -\frac{\pi}{3}\right]$ 上单调递减.

因为 $f(x) = \sin(\omega x + \varphi)$, 所以 f(x) 的最小值为 -1, 最大值为 1.

由题意得 $f(-\frac{\pi}{3}) = -1$,又因为 f(x) 在区间 $[-\frac{\pi}{3}, \frac{2\pi}{3}]$ 上单调递增,且 $f(\frac{2\pi}{3}) = 1$,

所以由三角函数的性质得 $\frac{T}{2} = \frac{2\pi}{3} + \frac{\pi}{3} = \pi$, 故 $T = 2\pi$.

因为
$$\omega > 0$$
,所以 $\omega = \frac{2\pi}{T} = 1$, $f(x) = \sin(x + \varphi)$.

由
$$\sin(-\frac{\pi}{3}+\varphi)=-1$$
, 得 $\varphi=2k\pi-\frac{\pi}{6} \ (k\in \mathbf{Z})$.

又因为
$$|\varphi| < \frac{\pi}{2}$$
,所以 $\varphi = -\frac{\pi}{6}$. 10分

第4页 共8页

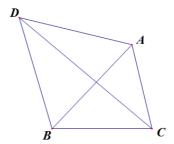
(II) 因为 $x \in (0,t)$, 所以 $x - \frac{\pi}{6} \in (-\frac{\pi}{6}, t - \frac{\pi}{6})$,

由题意可得 $t - \frac{\pi}{6} \in (\frac{\pi}{2}, \frac{5\pi}{2}]$,所以t的取值范围是 $(\frac{2\pi}{3}, \frac{8\pi}{3}]$.

(18) (本小题 14分)

如图, $\triangle ABD$ 为正三角形,AC//DB,AC = 4, $\cos \angle ABC = \frac{\sqrt{21}}{7}$.

- (I) 求 sin ∠ACB 的值;
- (II) 求AB, CD的长.



解: (I) 因为 $\triangle ABD$ 为正三角形,AC//DB,所以在 $\triangle ABC$ 中, $\angle BAC = \frac{\pi}{3}$,

所以
$$\angle ACB = \pi - (\frac{\pi}{3} + \angle ABC)$$
.

所以
$$\sin \angle ACB = \sin(\frac{\pi}{3} + \angle ABC) = \sin\frac{\pi}{3}\cos\angle ABC + \cos\frac{\pi}{3}\sin\angle ABC)$$

因为在
$$\triangle ABC$$
中, $\cos \angle ABC = \frac{\sqrt{21}}{7}$, $\angle ABC \in (0,\pi)$

所以
$$\sin\angle ABC = \frac{2\sqrt{7}}{7}$$
.

所以
$$\sin \angle ACB = \frac{\sqrt{3}}{2} \times \frac{\sqrt{21}}{7} + \frac{1}{2} \times \frac{2\sqrt{7}}{7} = \frac{5\sqrt{7}}{14}$$
.

(II) 在
$$\triangle ABC$$
中, $AC = 4$,由正弦定理得: $\frac{AB}{\sin \angle ACB} = \frac{AC}{\sin \angle ABC}$,

所以
$$AB = \frac{AC \cdot \sin \angle ACB}{\sin \angle ABC} = \frac{4 \times \frac{5\sqrt{7}}{14}}{\frac{2\sqrt{7}}{7}} = 5$$

又在正
$$\triangle ABD$$
中, $AB = AD$, $\angle DAB = \frac{\pi}{3}$,

第5页 共8页

所以在 $\triangle ADC$ 中, $\angle DAC = \frac{2\pi}{3}$,

由余弦定理得: $CD^2 = AC^2 + AD^2 - 2AC \cdot AD \cos \angle DAC$

$$=16+25-2\times4\times5$$
• $\cos\frac{2\pi}{3}=61$

所以 CD 的长为 $\sqrt{61}$.

<mark>7 分</mark>

- (19) (本小题 14 分) 已知函数 $f(x) = \frac{3-2x}{x^2+a}$.
 - (I) 若 a = -4, 求 f(x) 的单调区间;
 - (II) 若 f(x) 在 x = -1 处取得极值, 求 f(x) 的单调区间, 并求其最大值与最小值.

解: (I)
$$f(x) = \frac{3-2x}{x^2-4}$$
, $f'(x) = \frac{2x^2-6x+8}{(x^2-4)^2} = \frac{2(x-\frac{3}{2})^2+\frac{7}{2}}{(x^2-4)^2}$,

所以 f'(x) > 0 恒成立.

所以 f(x) 的递增区间为 $(-\infty, -2)$, (-2, 2), $(2, +\infty)$, 无递减区间. 5分

由题意知 f'(-1)=0,所以 $(-1)^2-3\times(-1)-a=0$. 故 a=4.

$$\stackrel{\underline{}}{=}$$
 a = 4 $\stackrel{\underline{}}{=}$ f(x) = $\frac{3-2x}{x^2+4}$, f'(x) = $\frac{2(x+1)(x-4)}{(x^2+4)^2}$.

f'(x)与 f(x)的情况如下:

х	$(-\infty, -1)$	-1	(-1, 4)	4	$(4, +\infty)$
f'(x)	+	0	_	0	+
f(x)	1	1	`	$-\frac{1}{4}$	1

因此,f(x) 的单调递增区间是 $(-\infty, -1)$ 和 $(4, +\infty)$,单调递减区间是(-1, 4).

所以 f(x) 在区间 $(-\infty, 4]$ 上的最大值是 f(-1)=1.

又因为当 $x \in (4, +\infty)$ 时,f(x) < 0,所以f(-1) = 1是f(x)的最大值.

同理可知, $f(4) = -\frac{1}{4}$ 是 f(x) 的最小值. 9分

- (20) (本小题 14 分) 设l为曲线 $C: y = (x-2)e^x + (x-2)e^x +$
- (I) 求*l*的方程:
- (II) 判断曲线 C 与直线 l 的公共点个数,并证明.

解: (I) 设
$$f(x) = (x-2)e^x$$
, $f'(x) = (x-1)e^x$, $f'(-1) = -\frac{2}{e}$, $f(-1) = -\frac{3}{e}$ 所以切线 l 为 $y = -\frac{2}{e}x - \frac{5}{e}$

(II)
$$\%g(x) = f(x) - (-\frac{2}{e}x - \frac{5}{e}) = (x - 2)e^x + \frac{2}{e}x + \frac{5}{e}$$

$$g'(x) = (x-1)e^x + \frac{2}{e}, g''(x) = xe^x, \Leftrightarrow g''(x) = 0, x = 0$$

x	(-∞,0)	0	(0,+∞)
g''(x)	_	0	+
g'(x)	↓	极小	1

g'(x)最小= g'(0) < 0, g'(-1) = 0, g'(x)在($-\infty$, 0)有且仅有一个变号零点-1

g'(x)最小= g'(0) < 0, $g'(1) = \frac{2}{e} > 0$, g'(x)在 $(0, +\infty)$ 有且仅有一个变号零点 $x_0 \in (0, 1)$

x	(-∞, -1)	-1	$(-1, x_0)$	x_0	$(x_0, +\infty)$
g'(x)	+	0	_	0	
g(x)	1	极大	1	极小	1

$$g(-1) = 0$$
, $g(x_0) < g(-1) = 0$, $g(2) = \frac{9}{e} > 0$

因此g(x)在 $(-\infty, -1)$ 和 $(-1, x_0)$ 无零点,在 $(x_0, +\infty)$ 恰有一个变号零点 $x_1 \in (x_0, 2)$,

综上,g(x)恰有 2 个零点-1与 x_1 . 9 分

(21) (本小题 15分)

设 m 为正整数,数列 $a_1, a_2, \dots, a_{4m+2}$ 是公差不为 0 的等差数列,若从中删去两项 a_i 和 a_j (i < j) 后剩余的 4m 项可被平均分为m 组,且每组的 4 个数都能构成等差数列,则称数列 $a_1, a_2, \dots, a_{4m+2}$ 是(i, j) - 可分数列.

- (I) 写出所有的(i,j), $1 \le i < j \le 6$, 使数列 a_1, a_2, \dots, a_6 是(i,j)-可分数列;
- (Ⅱ) 当 $m \ge 3$ 时,证明:数列 $a_1, a_2, \dots, a_{4m+2}$ 是(2,13)-可分数列;
- (III) 证明: 使数列 $a_1, a_2, \dots, a_{4m+2}$ 是(i, j) 一可分数列的有序数对(i, j) 至少有 $m^2 + m + 1$ 个.

【解】(I) 不失一般性, 可设 $a_k = k(k = 1, 2, \dots, 4m + 2)$,

相当于从1,2,3,4,5,6中取出两个数i和j(i < j),使得剩下四个数是等差数列. 那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.

所以所有可能的(i,j)是(1,2),(1,6),(5,6). 4分 (每个1分; 若有错误, 至多给3分)

(II) 从数列 $1,2,\dots,4m+2$ 中取出2和13后,剩余的<math>4m个数可分为以下两个部分:

 $\{1,4,7,10\},\{3,6,9,12\},\{5,8,11,14\}$, 共3组; 3分

 $\{15,16,17,18\},\{19,20,21,22\},...,\{4m-1,4m,4m+1,4m+2\},$ 共m-3组. 2分

共m组,易知每组都成等差数列,故数列 $a_1, a_2, \dots, a_{4m+2}$ 是(2,13)-可分数列.

(III) 首先证明引理: 数列 $a_1, a_2, \dots, a_{4m+2}$ 是 (2,4k+1) — 可分数列($2 \le k \le m$).

先考虑 $a_1 \sim a_{4k+2}$, 当 k=2 时, 去掉 a_2, a_9 后, 分为两组 (a_1, a_3, a_5, a_7) , (a_4, a_6, a_8, a_{10}) ;

当 $k \ge 3$ 时,将这 4k + 2 项去掉 a_2, a_{4k+1} 后,分为如下 k 组:

 $(a_1, a_{k+1}, a_{2k+1}, a_{3k+1}), (a_3, a_{k+3}, a_{2k+3}, a_{3k+3}), (a_4, a_{k+4}, a_{2k+4}, a_{3k+4}), \dots, (a_k, a_{2k}, a_{3k}, a_{4k}) \not b$ $(a_{k+2}, a_{2k+2}, a_{3k+2}, a_{4k+2});$

再将 $a_{4k+3} \sim a_{4m+2}$ 按角标从小到大每连续四项分为一组,共m-k组.

经检验,上述m组,每组的四项都成等差数列。引理证毕.

一方面,由引理可得,原数列是(4l+2,4k+1)-可分数列,其中 $k-l \ge 2$,只需将 $a_1 \sim a_{4l}$ 按角标从小到大每连续四项分为一组,其余同引理。 3分

另一方面,原数列必是(4k+1,4l+2)-可分数列 $(0 \le k \le l \le m)$,因为去掉 a_{4k+1},a_{4l+2} 后,还剩下三部分 $a_1 \sim a_{4k},a_{4k+2} \sim a_{4l+1},a_{4l+3} \sim a_{4m+2}$,由于每部分的项数均为 4 的倍数,所以每部分都可以按角标从小到大,连续四项分为一组即可。 2分

综上所述,有序数对(i,j)至少有 $A_{m+1}^2 + m + 1 - m = m^2 + m + 1$.

第8页 共8页