2023 北京海淀高三(上)期中

学 数

一、选择题共 10 小题,每小题 4 分,共 40 分.在每小题列出的四个选项中,选出符合题目要 求的一项.

- 1. 已知集合 $A = \{x | x < 2\}, B = \{1, 2\}$,则 $A \cup B = ($)
- A. $\left(-\infty,2\right)$ B. $\left(-\infty,2\right]$ C. $\left\{1\right\}$

D. $\{1,2\}$

- 2. 若复数z满足 $z \cdot i = \frac{2}{1+i}$,则z = ()
- A. -1-i
- B. -1+i

- D.1+i
- 3. 下列函数中,既是偶函数又在区间 $(0,+\infty)$ 上单调递增的是()
- A. $y = \ln x$
- B. $y = x^3$ C. $y = |\tan x|$
- D. $v = 2^{|x|}$
- 4.已知向量 \vec{a} , \vec{b} 满足 $\vec{a} = (2,1)$, $\vec{a} \vec{b} = (-1,2)$,则 $\vec{a} \cdot \vec{b} = (-1,2)$
- A. -5

C. 5

- D. 7
- 5. 设等差数列 $\{a_n\}$ 的前n项和为 S_n , 且 $S_5=15$,则 $a_2 \cdot a_4$ 的最大值为()
- A. $\frac{9}{4}$

C. 9

D. 36

- A. a > b > c
- B. c > b > a
- C. b > a > c
- D. b > c > a

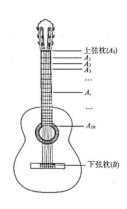
- 7. " $\sin\theta + \tan\theta > 0$ "是" θ 为第一或第三象限角"的()
- A. 充分而不必要条件

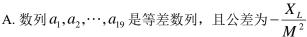
B. 必要而不充分条件

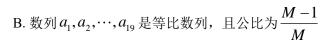
C. 充分必要条件

- D. 既不充分也不必要条件
- 8. 在 $\triangle ABC$ 中, $\sin B = \sin 2A, c = 2a$,则 ()
- A. $\angle B$ 为直角
- B. ∠B 为钝角
- C. ∠*C* 为直角
- D. *∠C* 为钝角
- 9. 古典吉他的示意图如图所示. A_0 , B 分别是上弦枕、下弦枕, A_i $(i=1,2,\cdots,19)$ 是第i 品丝. 记 a_i 为 A_i
- 与 A_{i-1} 的距离, L_i 为 A_i 与 A_0 的距离,且满足 $a_i = \frac{X_L L_{i-1}}{M}$, $i = 1, 2, \cdots, 19$,其中 X_L 为弦长(A_0 与 B 的

距离),M 为大于 1 的常数,并规定 $L_0 = 0$. 则()







C. 数列
$$L_1, L_2, \cdots, L_{19}$$
 是等比数列,且公比为 $\frac{2M-1}{M}$

D. 数列
$$L_1, L_2, \cdots, L_{19}$$
 是等差数列,且公差为 $\frac{\left(M-1\right)X_L}{M^2}$

A.
$$\left[0, \sqrt{10}\right]$$

B.
$$\left[0,2+\sqrt{2}\right]$$

C.
$$[2-\sqrt{2},\sqrt{10}]$$

B.
$$\left[0, 2 + \sqrt{2}\right]$$
 C. $\left[2 - \sqrt{2}, \sqrt{10}\right]$ D. $\left[2 - \sqrt{2}, 2 + \sqrt{2}\right]$

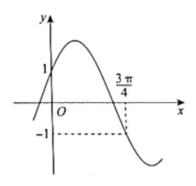
二、填空题共5小题,每小题5分,共25分.

11. 函数
$$f(x) = \lg(x+1) + \frac{1}{x}$$
 的定义域是_____.

12. 在平面直角坐标系 xOy 中,角 α 以 Ox 为始边,终边经过点 P(1,-2),则 $\tan 2\alpha =$ ______

13. 已知非零向量 $\vec{a} = x(\vec{e_1} + \vec{e_2}), \vec{b} = \vec{e_1} + y\vec{e_2}$, 其中 $\vec{e_1}, \vec{e_2}$ 是一组不共线的向量. 能使得 \vec{a} 与 \vec{b} 的方向相反 的一组实数 x, y 的值为 $x = _____, y = _____.$

14. 已知函数 $f(x) = 2\sin(\omega x + \varphi)$ 的部分图象如图所示.

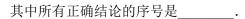


①函数f(x)的最小正周期为_____;

②将函数 f(x) 的图象向右平移 t(t>0) 个单位长度,得到函数 g(x) 的图象. 若函数 g(x) 为奇函数,则 t 的最小值是_____.

- 15. 已知函数 $f(x) = \begin{cases} 2^x + a, x < a \\ x^2 + 2ax, x \ge a \end{cases}$ 给出下列四个结论:
- ①当a=0时,f(x)的最小值为0;
- ②当 $a \le \frac{1}{3}$ 时,f(x)存在最小值;
- ③ f(x)的零点个数为 g(a),则函数 g(a)的值域为 $\{0,1,2,3\}$;

④当
$$a \ge 1$$
时,对任意 $x_1, x_2 \in \mathbf{R}, f(x_1) + f(x_2) \ge 2f(\frac{x_1 + x_2}{2}).$



三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.

- 16. 已知无穷等比数列 $\{a_n\}$ 的各项均为整数,其前n项和为 $S_n, a_2 = 3, a_1 + a_3 = 10$.
- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 证明: 对 $\forall k \in \mathbf{N}^*, 3S_k, 2S_{k+1}, S_{k+2}$ 这三个数成等差数列.
- 17. 已知函数 $f(x) = 2\cos x \cdot \cos(x + \varphi) \left(|\varphi| < \frac{\pi}{2} \right)$,从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数 f(x) 存在.

条件①:
$$f\left(\frac{\pi}{3}\right) = 1$$
;

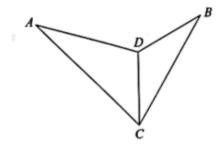
条件②:函数 f(x) 在区间 $\left[0,\frac{\pi}{4}\right]$ 上是增函数;

条件③:
$$\forall x \in \mathbb{R}, f(x) \ge f\left(\frac{2\pi}{3}\right)$$
.

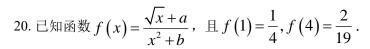
- 注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.
- (1) 求 φ 的值;
- (2) 求 f(x) 在区间 $\left[-\frac{\pi}{2}, 0\right]$ 上的最大值和最小值.
- 18. 已知曲线 $C: y = 4 x^2$ 与x 轴交于不同的两点A,B (点 A 在点B 的左侧),点P(t,0) 在线段AB 上 (不与端点重合),过点P 作x 轴的垂线交曲线C 于点Q.
- (1) 若 $\triangle APQ$ 为等腰直角三角形,求 $\triangle APQ$ 的面积;

(2) 记 $\triangle APQ$ 的面积为S(t), 求S(t)的最大值.

19. 某景区有一人工湖,湖面有 A, B 两点,湖边架有直线型栈道 CD,长为 50m,如图所示. 现要测是 A, B 两点之间的距离,工作人员分别在 C, D 两点进行测量,在 C 点测得 $\angle ACD = 45^{\circ}$, $\angle BCD = 30^{\circ}$;在 D 点测得 $\angle ADB = 135^{\circ}$, $\angle BDC = 120^{\circ}$. (A, B, C, D 在同一平面内)



- (1) 求A,B两点之间的距离;
- (2) 判断直线 CD 与直线 AB 是否垂直,并说明理由.



- (1) 求a,b的值;
- (2) 求f(x)的单调区间;
- (3) 设实数m满足:存在 $k \in \mathbb{R}$,使直线y = kx + m是曲线y = f(x)的切线,且 $kx + m \ge f(x)$ 对 $x \in [0, +\infty)$ 恒成立,求m的最大值.
- 21. 设无穷数列 $\left\{a_n\right\}$ 的前n项和为 S_n , $\left\{i_n\right\}$ 为单调递增的无穷正整数数列,记 $A_n=S_{i_{n+1}}-S_{i_n}$,

$$\left(n=1,2,\cdots\right), \ \ \not\Xi\not\subset\Omega=\left\{j\in\mathbf{N}^*\left|S_k-S_j\geq0,k=j+1,j+2,\cdots\right\}\right.$$

(1) 若
$$a_n = n$$
, $i_n = n^2 (n = 1, 2, \cdots)$, 写出 A_1, A_2 的值;

(2) 若
$$a_n = \left(-\frac{1}{2}\right)^{n-1} (n=1,2,\dots)$$
, 求 Ω ;

(3) 设
$$\operatorname{sgn}(x) = \begin{cases} 1, & x > 0, \\ 0, & x = 0,$$
求证:对任意的无穷数列 $\{a_n\}$,存在数列 $\{i_n\}$,使得 $\{\operatorname{sgn}(A_n)\}$ 为常数 $-1, \quad x < 0.$

列.

参考答案

一、选择题共 10 小题,每小题 4 分,共 40 分.在每小题列出的四个选项中,选出符合题目要求的一项.

1. 【答案】B

【分析】根据并集的运算即可求解.

【详解】 A 集合包含所有小于 2 的实数, B 包含 1 和 2 两个元素,所以 $A \cup B = \{x | x \le 2\}$,

故选: B.

2. 【答案】A

【分析】根据复数除法和乘法运算法则计算.

【详解】
$$z = \frac{2}{1+i} \cdot \frac{1}{i} = \frac{2}{-1+i} = \frac{2(-1-i)}{(-1+i)(-1-i)} = \frac{2(-1-i)}{1+1} = -1-i$$
.

故选: A.

3. 【答案】D

【分析】A 选项, $y = \ln x$ 定义域不关于原点对称,不是偶函数; B 选项, $f(x) = x^3$ 为奇函数; C 选项,根据 $g(\pi) = g(2\pi) = 0$ 得到 C 不满足在区间 $(0, +\infty)$ 上单调递增; D 选项,判断出函数为偶函数且在 $(0, +\infty)$ 上单调递增.

【详解】A选项, $y = \ln x$ 的定义域为 $(0, +\infty)$,定义域不关于原点对称,故不是偶函数,A错误;

B 选项, $f(x) = x^3$ 的定义域为 R, 且 $f(-x) = -x^3 = -f(x)$, 故 $f(x) = x^3$ 为奇函数, B 错误;

C 选项,设 $g(x) = |\tan x|$,因为 $g(\pi) = |\tan \pi| = 0$, $g(2\pi) = |\tan 2\pi| = 0$,

故 $y = |\tan x|$ 在 $(0, +\infty)$ 上不单调递增,C 错误;

D 选项, $h(x) = 2^{|x|}$ 的定义域为 R,且 $h(-x) = 2^{|-x|} = 2^{|x|} = h(x)$,故 $h(x) = 2^{|x|}$ 为偶函数,

又当x>0时, $h(x)=2^x$,在 $(0,+\infty)$ 上单调递增,故满足要求,D正确.

故选: D

4. 【答案】C

【分析】先求出 $\vec{b} = \vec{a} - (\vec{a} - \vec{b}) = (3,-1)$, 进而利用向量数量积公式求出答案.

【详解】因为
$$\vec{a} = (2,1), \vec{a} - \vec{b} = (-1,2)$$
,所以 $\vec{b} = \vec{a} - (\vec{a} - \vec{b}) = (2,1) - (-1,2) = (3,-1)$,

故
$$\vec{a} \cdot \vec{b} = (2,1) \cdot (3,-1) = 2 \times 3 - 1 = 5$$
.

故选: C

5. 【答案】C

【分析】先求得 a_3 的关系式,然后利用基本不等式求得正确答案.

【详解】设等差数列 $\{a_n\}$ 的公差为d,则 $S_5 = 5a_1 + 10d = 15, a_1 + 2d = 3$,

也即
$$a_3 = 3$$
,所以 $a_2 \cdot a_4 \le \left(\frac{a_2 + a_4}{2}\right)^2 = a_3^2 = 9$,

当且仅当 $a_2 = a_4 = 3$ 时等号成立.

故选: C

6. 【答案】D

【分析】首先将这三个数化为同底的对数,再根据单调性比较大小.

【详解】
$$a = \log_4 6 = \log_2 \sqrt{6}$$
, $b = \log_2 3 = \log_2 \sqrt{9}$,

$$c = \frac{3}{2} = \log_2 2^{\frac{3}{2}} = \log_2 \sqrt{8} ,$$

因为 $y = \log_2 x$ 是增函数, $\sqrt{6} < \sqrt{8} < \sqrt{9}$,

所以a < c < b.

故选: D

7. 【答案】C

【分析】根据同角三角函数关系化简,根据三角函数在各象限的符号,结合充分条件、必要条件即可得解.

【详解】因为
$$\sin \theta + \tan \theta = \frac{\sin \theta (\cos \theta + 1)}{\cos \theta} > 0$$
时,则 $\tan \theta > 0$,

所以 θ 为第一或第三象限角,

反之, 当 θ 为第一或第三象限角时, $\tan \theta > 0$, 所以 $\sin \theta + \tan \theta > 0$,

综上, " $\sin\theta + \tan\theta > 0$ "是" θ 为第一或第三象限角"的充分必要条件,

故选: C

8. 【答案】C

【分析】由正弦定理边化角得 $\cos A = \frac{b}{2a}$, 结合余弦定理和 c = 2a 化解,可求出 A, B, C.

【详解】由 $\sin B = \sin 2A = 2\sin A\cos A$,即 $b = 2a\cos A$, $\cos A = \frac{b}{2a}$,

又
$$c = 2a$$
 , 所以 $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{b^2 + 4a^2 - a^2}{2b \cdot 2a} = \frac{b}{2a}$, 化简得 $b = \sqrt{3}a$,

则
$$a:b:c=1:\sqrt{3}:2$$
, 故在 $\triangle ABC$ 中, $A=\frac{\pi}{6}, B=\frac{\pi}{3}, C=\frac{\pi}{2}$,

故选: C

9. 【答案】B

【分析】根据项与前n项和的关系结合条件可得 $a_{i+1} = \frac{M-1}{M}a_i$,根据等比数列的概念进而判断 AB,结合

条件可得 $L_{i-1}=X_L-X_L \left(\frac{M-1}{M}\right)^{i-1}$,进而判断 CD.

【详解】因为 $a_i = \frac{X_L - L_{i-1}}{M}, i = 1, 2, \cdots, 19, \ L_0 = 0,$

所以
$$a_1 = \frac{X_L}{M}$$
, $a_{i+1} = \frac{X_L - L_i}{M}$,

所以
$$a_{i+1} - a_i = \frac{X_L - L_i}{M} - \frac{X_L - L_{i-1}}{M} = \frac{-(L_i - L_{i-1})}{M} = -\frac{a_i}{M}$$
,

即
$$a_{i+1} = a_i - \frac{a_i}{M} = \frac{M-1}{M} a_i$$
,又 M 为大于 1 的常数,

所以 $\frac{a_{i+1}}{a_i} = \frac{M-1}{M}$,即数列 a_1, a_2, \cdots, a_{19} 是等比数列,且公比为 $\frac{M-1}{M}$,故 A 错误,B 正确;

由上可知
$$a_i = \frac{X_L}{M} \left(\frac{M-1}{M} \right)^{i-1}$$
, 又 $a_i = \frac{X_L - L_{i-1}}{M}$, $i = 1, 2, \cdots, 19$,

所以
$$L_{i-1} = X_L - X_L \left(\frac{M-1}{M} \right)^{i-1}$$
 , $L_i = X_L - X_L \left(\frac{M-1}{M} \right)^i$,

所以
$$\frac{L_i}{L_{i-1}} = \frac{1 - \left(\frac{M-1}{M}\right)^i}{1 - \left(\frac{M-1}{M}\right)^{i-1}}, i = 2, 3, \cdots, 19$$
 不是常数,故 C 错误;

所以
$$L_i - L_{i-1} = X_L \left(\frac{M-1}{M} \right)^{i-1} - X_L \left(\frac{M-1}{M} \right)^i, i = 2, 3, \cdots, 19$$
,不是常数,故 D 错误.

故选: B.

10. 【答案】A

【分析】根据向量的坐标运算即可得 $\left|\overrightarrow{AP} + \overrightarrow{MQ}\right| = \sqrt{\left(a + \sqrt{2}\cos\theta\right)^2 + \left(-\sqrt{2} + \sqrt{2}\sin\theta\right)^2}$, 进而将 $\sqrt{\left(a + \sqrt{2}\cos\theta\right)^2 + \left(-\sqrt{2} + \sqrt{2}\sin\theta\right)^2}$ 可看作是点 $Q\left(\sqrt{2}\cos\theta, \sqrt{2}\sin\theta\right)$ 到点 $R\left(-a, \sqrt{2}\right)$ 的距离,即可

求解.

【详解】以M为圆心,以MA,MC为x,y轴,建立如图所示的空间直角坐标系,

由于
$$AB = AC = 2$$
, 所以 $BC = 2\sqrt{2}$, $BM = CM = \sqrt{2}$,

由于点
$$Q$$
在 AC ,不妨设 $Q\left(\sqrt{2}\cos\theta,\sqrt{2}\sin\theta\right)$, $\theta\in\left[0,\frac{\pi}{2}\right]$,

$$A(0,\sqrt{2}), P(a,0), \quad \sharp \psi -\sqrt{2} \le a \le \sqrt{2}$$

$$\overrightarrow{AP} + \overrightarrow{MQ} = (a, -\sqrt{2}) + (\sqrt{2}\cos\theta, \sqrt{2}\sin\theta) = (a + \sqrt{2}\cos\theta, -\sqrt{2} + \sqrt{2}\sin\theta),$$

所以
$$\left|\overrightarrow{AP} + \overrightarrow{MQ}\right| = \sqrt{\left(a + \sqrt{2}\cos\theta\right)^2 + \left(-\sqrt{2} + \sqrt{2}\sin\theta\right)^2}$$
,

 $\sqrt{\left(a+\sqrt{2}\cos\theta\right)^2+\left(-\sqrt{2}+\sqrt{2}\sin\theta\right)^2}$ 可看作是 AC 上的点 $Q\left(\sqrt{2}\cos\theta,\sqrt{2}\sin\theta\right)$ 到点 $R\left(-a,\sqrt{2}\right)$ 的距离,

由于点
$$R(-a,\sqrt{2})$$
 在线段 $y = \sqrt{2}(-\sqrt{2} \le x \le \sqrt{2})$ 上运动,

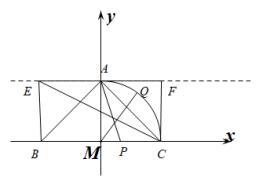
故当点
$$R\left(-a,\sqrt{2}\right)$$
运动到点 $E\left(-\sqrt{2},\sqrt{2}\right)$ 时,此时距离最大,为

$$CE = \sqrt{CF^2 + EF^2} = \sqrt{\left(\sqrt{2}\right)^2 + \left(2\sqrt{2}\right)^2} = \sqrt{10}$$
,

当点 $R\left(-a,\sqrt{2}\right)$ 运动到点 $A\left(0,\sqrt{2}\right)$ 时,此时距离最小为0,

综上可知:
$$\left| \overrightarrow{AP} + \overrightarrow{MQ} \right| \in \left[0, \sqrt{10} \right]$$
,

故选: A



- 二、填空题共5小题,每小题5分,共25分.
- 11. 【答案】(-1,0)∪(0,+∞)

【 详解 】 要 使 函 数
$$f(x) = \lg(x+1) + \frac{1}{x}$$
 有 意 义 , 则 $\begin{cases} x+1>0 \\ x \neq 0 \end{cases}$, 解 得 $x > -1, x \neq 0$, 所 以 函 数

$$f(x) = \lg(x+1) + \frac{1}{x}$$
的定义域是 $(-1,0) \cup (0,+\infty)$, 故答案为 $(-1,0) \cup (0,+\infty)$.

12. 【答案】
$$\frac{4}{3}$$

【分析】根据三角函数的定义及二倍角公式即得.

【详解】由三角函数的定义可知 $\tan \alpha = -2$,

所以
$$\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} = \frac{-4}{1 - 4} = \frac{4}{3}$$

故答案为: $\frac{4}{3}$.

13. 【答案】 ①. -1(不唯一) ②. 1

【分析】设 $\vec{a} = \lambda \vec{b} (\lambda < 0)$,则有 $\vec{xe_1} + \vec{xe_2} = \lambda \vec{e_1} + \lambda \vec{ye_2}$,列出方程组求解即可.

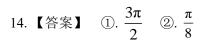
【详解】解: 设 $\vec{a} = \lambda \vec{b} (\lambda < 0)$,

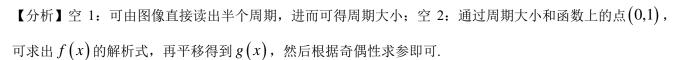
则有
$$x(\overrightarrow{e_1} + \overrightarrow{e_2}) = \lambda(\overrightarrow{e_1} + y\overrightarrow{e_2})$$
,

所以
$$\begin{cases} x = \lambda \\ x = \lambda y \end{cases}$$
, 所以 $x = xy(x < 0)$, 解得 $x < 0$, $y = 1$,

取 x = -1, y = 1.

故答案为: -1(不唯一), 1





【详解】空 1: 由图可知
$$\frac{1}{2}T = \frac{3\pi}{4} - 0 = \frac{3\pi}{4}$$
,即 $T = \frac{3\pi}{2}$

空 2:
$$\frac{2\pi}{\omega} = \frac{3\pi}{2}$$
,即 $\omega = \frac{4}{3}$,

则
$$f(x) = 2\sin\left(\frac{4}{3}x + \varphi\right)$$
, 又过点 $(0,1)$,

所以
$$f(0) = 2\sin\varphi = 1$$
,即 $\sin\varphi = \frac{1}{2}$,

又(0,1)在原图增区间上,所以可取 $\varphi = \frac{\pi}{6} + 2k\pi, k \in \mathbb{Z}$,

所以
$$f(x) = 2\sin\left(\frac{4}{3}x + \frac{\pi}{6} + 2k\pi\right) = 2\sin\left(\frac{4}{3}x + \frac{\pi}{6}\right), k \in \mathbb{Z}$$
,

向右平移
$$t(t>0)$$
 个单位可得 $g(x) = f(x-t) = 2\sin\left[\frac{4}{3}(x-t) + \frac{\pi}{6}\right] = 2\sin\left(\frac{4}{3}x + \frac{\pi}{6} - \frac{4}{3}t\right)$,

又
$$g(x)$$
为奇函数,所以 $\frac{\pi}{6} - \frac{4}{3}t = k\pi, k \in \mathbb{Z}$,

$$\mathbb{H}\,t=\frac{\pi}{8}-k\cdot\frac{3\pi}{4},k\in\mathbb{Z},$$

 $\mathbb{Z} t > 0$,

所以
$$t_{\min} = \frac{\pi}{8}$$
.

故答案为: $\frac{3\pi}{2}$; $\frac{\pi}{8}$.

15. 【答案】①③

【分析】利用函数的单调性及最值可判断①②,根据零点定义结合条件分类讨论可判断③,利用特值可判断④.

【详解】对①,当
$$a = 0$$
时, $f(x) = \begin{cases} 2^x, x < 0 \\ x^2, x \ge 0 \end{cases}$

当x < 0时, $0 < 2^x < 1$,当 $x \ge 0$ 时, $x^2 \ge 0$,

综上, f(x)的最小值为0, ①正确;

对②,
$$a \le \frac{1}{3}$$
, $f(x) = \begin{cases} 2^x + a, x < a \\ x^2 + 2ax, x \ge a \end{cases}$,

当x < a时, $2^x + a > a$,

当
$$x \ge a$$
 时,若 $a < 0$, $x^2 + 2ax \ge a^2 - 2a^2 = -a^2$;若 $0 \le a \le \frac{1}{3}$, $x^2 + 2ax \ge a^2 + 2a^2 = 3a^2$,

如
$$a = -\frac{1}{2}$$
时, $f(x) > -\frac{1}{2}$,函数不存在最小值,②错误;

对③, 当a < 0时, $2^x + a = 0$ 最多一个解,

如
$$a = -1$$
 时, $f(x) = \begin{cases} 2^x - 1, x < -1 \\ x^2 - 2x, x \ge -1 \end{cases}$, 由 $2^x - 1 = 0$ 可得 $x = 0$ (舍去),

由 $x^2 - 2x = 0$ 得 x = 0 或 x = 2, 故此时 f(x) 两个零点, 即 g(a) = 2;

如
$$a = -\frac{1}{2}$$
时, $f(x) = \begin{cases} 2^x - \frac{1}{2}, x < -\frac{1}{2} \\ x^2 - x, x \ge -\frac{1}{2} \end{cases}$, 由 $2^x - \frac{1}{2} = 0$ 可得 $x = -1$,

由 $x^2 - x = 0$ 得 x = 0 或 x = 1, 故此时 f(x) 三个零点, 即 g(a) = 3;

当
$$a = 0$$
 时, $f(x) = \begin{cases} 2^x, x < 0 \\ x^2, x \ge 0 \end{cases}$, 由 $2^x = 0$ 可得 $x \in \emptyset$,

由 $x^2 = 0$ 得x = 0,故此时f(x)一个零点,即g(a) = 1;

当
$$a > 0$$
时, $f(x) = \begin{cases} 2^x + a, x < a \\ x^2 + 2ax, x \ge a \end{cases}$, $x < a$ 时, $2^x + a > 0$, $2^x + a = 0$ 无解,

 $x \ge a > 0$ 时, $x^2 + 2ax > 0$, $x^2 + 2ax = 0$ 无解,

此时 f(x) 没有零点, 即 g(a)=0.

综上, g(a)的值域为 $\{0,1,2,3\}$, 故③正确;

对④, 当
$$a \ge 1$$
时, 如 $a = 4$ 时, $f(x) = \begin{cases} 2^x + 4, x < 4 \\ x^2 + 8x, x \ge 4 \end{cases}$

$$f(3)=12$$
, $f(4)=48$, $f(5)=65$, 此时 $f(3)+f(5)=77<2f(4)=96$, 故④错误.

故答案为: ①③

【点睛】方法点睛:函数零点的求解与判断方法:

- (1)直接求零令f(x)=0,如果能求出解,则有几个解就有几个零点.
- (2)零点存在性定理:利用定理不仅要函数在区间 [a,b] 上是连续不断的曲线,且 $f(a)\cdot f(b)<0$,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.
- (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.
- 三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.
- 16. 【答案】16. 3ⁿ⁻¹ 17. 证明见解析

【分析】(1)设出公比,代入已知条件,解方程即可;

(2) 按照等差数列的定义,作差即可证明.

【详解】(1) 设公比为
$$q$$
, 由题意有 $a_1 + a_3 = \frac{a_2}{q} + a_2 q = 10$

代入
$$a_2 = 3$$
 得 $3q^2 - 10q + 3 = 0$, 故 $q = \frac{1}{3}$ 或 3

又各项均为整数,故q=3

于是
$$a_n = a_2 \times 3^{n-2} = 3^{n-1}$$
.

(2) 由 (1) 得
$$S_k = \frac{1-3^n}{1-3} = \frac{3^n-1}{2}$$

所以
$$2S_{k+1} - 3S_k = 2 \cdot \frac{3^{k+1} - 1}{2} - 3 \cdot \frac{3^k - 1}{2} = \frac{1 + 3^{k+1}}{2}$$

$$S_{k+2} - 2S_{k+1} = \frac{3^{k+2} - 1}{2} - 2 \cdot \frac{3^{k+1} - 1}{2} = \frac{1 + 3^{k+1}}{2}.$$

所以
$$2S_{k+1} - 3S_k = S_{k+2} - 2S_{k+1} = \frac{1+3^{k+1}}{2}$$
.

所以
$$3S_k, 2S_{k+1}, S_{k+2}$$
是以 $\frac{1+3^{k+1}}{2}$ 为公差的等差数列.

17. 【答案】 (I) $\varphi = -\frac{\pi}{3}$;

(II) 最大值 1, 最小值
$$-\frac{1}{2}$$
.

解: (I) 若选条件①:
$$f(\frac{\pi}{3})=1$$
, 即 1=2cos

$$\frac{\pi}{3}\cos\left(\frac{\pi}{3}+\varphi\right)$$
, $\mathbb{F}\cos\left(\frac{\pi}{3}+\varphi\right)=1$,

又因为
$$|\varphi| < \frac{\pi}{2}$$
,可得 $\varphi=-\frac{\pi}{3}$.

若选条件②: 因为 f(x)= $2\cos x$ ($\cos x\cos \phi$ - $\sin x\sin \phi$)= $2\cos^2 x\cos \phi$ - $2\sin x\cos x\sin \phi$ = (1+ $\cos 2x$) $\cos \phi$ - $\sin 2x\sin \phi$ = $\cos \phi$ + $\cos 2x\cos \phi$ - $\sin 2x\sin \phi$ = $\cos \phi$ + $\cos (2x+\phi)$,

因为函数
$$f(x)$$
 在区间[0, $\frac{\pi}{4}$]上是增函数,则 $2x+\phi\in[\phi, \frac{\pi}{2}+\phi]$,

所以-
$$\pi$$
+2 $k\pi$ < ϕ < ϕ + $\frac{\pi}{2}$ <2 $k\pi$, k \in Z , $\overline{m}|\phi|$ < $\frac{\pi}{2}$,

解得 $\varphi \in \emptyset$;

若选条件③:
$$\forall x \in R$$
, $f(x) \ge f(\frac{2\pi}{3})$, 可得 $\cos(\frac{2}{3}\pi \times 2 + \varphi) = -1$, 而 $|\varphi| < \frac{\pi}{2}$,

解得
$$\varphi=-\frac{\pi}{3}$$
;

综上所述:
$$φ=-\frac{\pi}{3}$$
;

(II)
$$\pm$$
 (I) \mp (X) \pm (S) \pm (S)

$$x \in [-\frac{\pi}{2}, 0]$$
时, $2x-\frac{\pi}{3} \in [-\frac{4\pi}{3}, -\frac{\pi}{3}\pi],$

当 t∈[
$$-\frac{4}{3}$$
π, $-\pi$]时, g (t) 单调递减,

当 t∈[-π,
$$-\frac{\pi}{3}$$
]时, g(t)单调递增,

所以
$$t \in [-\frac{4\pi}{3}, -\frac{\pi}{3}]$$
, $g(t)_{min}=g(-\pi)=\frac{1}{2}-1=-\frac{1}{2}$,

$$\overline{\text{m}} \ g \ (-\frac{4\pi}{3}) = -\frac{1}{2}, \ g \ (-\frac{\pi}{3} \ \pi) = \frac{1}{2},$$

所以函数 g(t)的最大值为
$$\frac{1}{2} + \frac{1}{2} = 1$$
;

所以求 f(x) 在区间[$-\frac{\pi}{2}$, 0] 上的最大值 1, 最小值- $\frac{1}{2}$.

18. 【答案】(1)
$$\frac{9}{2}$$

$$(2) \frac{128}{27}$$

【分析】(1) 求得 A, B, P, Q 的坐标, 从而求得三角形 APQ 的面积.

(2) 先求得三角形 APQ 面积的表达式, 然后利用导数求得面积的最大值.

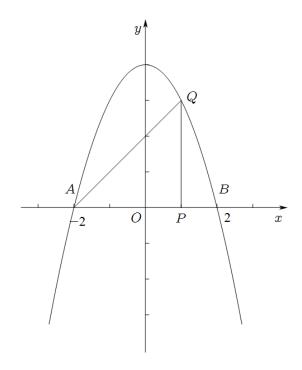
【小问1详解】

依题意, $AP \perp PQ$, 所以|AP| = |PQ|,

由
$$P(t,0)$$
,得 $Q(t,4-t^2)$,

则
$$t-(-2)=4-t^2$$
,解得 $t=1$ 或 $t=-2$ (舍去),则 $P(1,0),Q(1,3)$,

所以
$$S_{\triangle APQ} = \frac{1}{2} \times 3 \times 3 = \frac{9}{2}$$
.



【小问2详解】

由
$$P(t,0)$$
,得 $Q(t,4-t^2)$,

则
$$S(t) = \frac{1}{2} \times (t+2) \times (4-t^2) = -\frac{1}{2}t^3 - t^2 + 2t + 8(-2 < t < 2)$$
,

$$S'(t) = -\frac{3}{2}t^2 - 2t + 2 = \frac{-3t^2 - 4t + 4}{2}$$

$$= -\frac{3t^2 + 4t - 4}{2} = -\frac{(t+2)(3t-2)}{2},$$

所以
$$S(t)$$
在区间 $\left(-2,\frac{2}{3}\right)$ 上 $S'(t)>0,S(t)$ 单调递增,

在区间
$$\left(\frac{2}{3},2\right)$$
上 $S'(t)$ < $0,S(t)$ 单调递减,

所以
$$S(t)$$
 的最大值是 $S(\frac{2}{3}) = \frac{1}{2} \times (\frac{2}{3} + 2) (4 - \frac{4}{9}) = \frac{1}{2} \times \frac{8}{3} \times \frac{32}{9} = \frac{128}{27}$.

19. 【答案】(1) 50√5m

(2) 直线 CD 与直线 AB 不垂直, 理由详见解析.

【分析】(1) 先求得AD,BD,利用余弦定理求得AB.

(2) 先求得 AC, BC, 然后根据向量法进行判断.

【小问1详解】

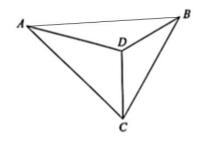
依题意, $\angle ACD = 45^{\circ}$, $\angle BCD = 30^{\circ}$, $\angle ADB = 135^{\circ}$, $\angle BDC = 120^{\circ}$,

所以
$$\angle ADC = 360^{\circ} - 135^{\circ} - 120^{\circ} = 105^{\circ}, \angle CAD = 180^{\circ} - 45^{\circ} - 105^{\circ} = 30^{\circ}$$
,

$$\angle CBD = 180^{\circ} - 120^{\circ} - 30^{\circ} = 30^{\circ} = \angle BCD$$
, 所以 $BD = CD = 50$,

在三角形
$$ACD$$
 中,由正弦定理得 $\frac{AD}{\sin 45^{\circ}} = \frac{CD}{\sin 30^{\circ}} = \frac{50}{\sin 30^{\circ}}, AD = 50\sqrt{2}$,

在三角形 ABD 中,由余弦定理得 $AB = \sqrt{50^2 + \left(50\sqrt{2}\right)^2 - 2 \times 50 \times 50\sqrt{2} \times \cos 135^\circ} = 50\sqrt{5} \text{m}$.



【小问2详解】

在三角形 BCD 中,由余弦定理得 $BC = \sqrt{50^2 + 50^2 - 2 \times 50 \times 50 \times \cos 120^\circ} = 50\sqrt{3}$,

$$\sin 105^{\circ} = \sin \left(60^{\circ} + 45^{\circ}\right) = \sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4},$$

在三角形
$$ACD$$
 中,由正弦定理得 $\frac{AC}{\sin 105^{\circ}} = \frac{CD}{\sin 30^{\circ}}, \frac{AC}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{50}{\frac{1}{2}} = 100$,

$$AC = 25\left(\sqrt{6} + \sqrt{2}\right),\,$$

直线 CD 与直线 AB 不垂直, 理由如下:

$$\overrightarrow{CD} \cdot \overrightarrow{AB} = \overrightarrow{CD} \cdot \left(\overrightarrow{CB} - \overrightarrow{CA} \right) = \overrightarrow{CD} \cdot \overrightarrow{CB} - \overrightarrow{CD} \cdot \overrightarrow{CA}$$

$$= 50 \times 50\sqrt{3} \times \cos 30^{\circ} - 50 \times 25 \left(\sqrt{6} + \sqrt{2}\right) \times \cos 45^{\circ}$$

$$= 2500 - 1250\sqrt{3} \neq 0,$$

所以直线 CD 与直线 AB 不垂直.

20. 【答案】(1)
$$a = 0, b = 3$$

(2) 增区间(0,1), 减区间 $(1,+\infty)$

$$(3) \frac{1}{4}$$

【分析】(1)根据已知条件列方程组,从而求得a,b.

- (2) 利用导数求得 f(x) 的单调区间.
- (3) 结合 f(x) 的图象、切线以及不等式恒成立求得m 的最大值.

【小问1详解】

依题意,
$$\begin{cases} f(1) = \frac{1+a}{1+b} = \frac{1}{4} \\ f(4) = \frac{2+a}{16+b} = \frac{2}{19} \end{cases}, \quad 解得 \ a = 0, b = 3.$$

【小问2详解】

曲 (1) 得
$$f(x) = \frac{\sqrt{x}}{x^2 + 3} (x \ge 0)$$
, $f(0) = 0$,

$$\stackrel{\text{def}}{=} x > 0 \text{ BF}, \quad f'(x) = \frac{\frac{1}{2\sqrt{x}} \times (x^2 + 3) - \sqrt{x} \times 2x}{\left(x^2 + 3\right)^2} = \frac{3(1+x)}{2\sqrt{x}} \cdot \frac{1-x}{\left(x^2 + 3\right)^2},$$

所以f(x)在区间(0,1)上f'(x) > 0, f(x)单调递增,

在区间 $(1,+\infty)$ 上f'(x)<0,f(x)单调递减.

【小问3详解】

曲 (2) 得
$$f'(1) = 0, f(1) = \frac{1}{4}$$
,

所以
$$y = f(x)$$
 的图象在 $x = 1$ 处的切线方程为 $y = \frac{1}{4}$, 此时 $m = \frac{1}{4}$.

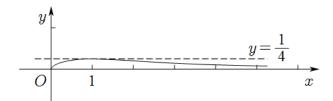
同时,
$$f(x)_{\max} = f(1) = \frac{1}{4}$$
, 因此 $kx + m \ge \frac{1}{4}$ 在 $x \in [0, +\infty)$ 时恒成立,

直线
$$y = kx + m$$
 是曲线 $y = f(x)$ 的切线,则 $k = \frac{3(1+x)}{2\sqrt{x}} \cdot \frac{1-x}{(x^2+3)^2}$,

结合图象可知, 当k < 0时, $kx + m \ge f(x)$ 不恒成立.

当
$$k=0$$
 时, $m=\frac{1}{4}$, $kx+m \ge f(x)$ 恒成立.

当
$$k > 0$$
 时, $m < \frac{1}{4}$, 因此 $m \le \frac{1}{4}$, 所以 m 的最大值为 $\frac{1}{4}$.



【点睛】求解函数单调区间的步骤: (1) 确定 f(x) 的定义域; (2) 计算导数 f'(x); (3) 求出 f'(x) = 0 的根; (4) 用 f'(x) = 0 的根将 f(x) 的定义域分成若干个区间,考查这若干个区间内 f'(x) 的符号,进而确定 f(x) 的单调区间: f'(x) = 0 ,则 f(x) 在对应区间上是增函数,对应区间为增区间; f'(x) < 0,则 f(x) 在对应区间上是减函数,对应区间为减区间.

21. 【答案】(1)
$$A_1 = 9, A_2 = 35$$

- (2) $\Omega = \{x | x = 2m, m = 1, 2, \dots \}$
- (3) 证明见解析

【分析】(1)通过公式即可求出 A_1, A_2 的值;

- (2) 求出数列 $\{a_n\}$ 的前n项和,对j讨论其奇偶,即可求出 Ω ;
- (3) 通过讨论 Ω 为有限集和无限集时的不同情况下 $\operatorname{sgn}(A_n)$ 的值,即可证明结论.

【小问1详解】

由题意,

$$A_n = S_{i_{n+1}} - S_{i_n}$$
, $(n = 1, 2, \dots)$, $a_n = n, i_n = n^2 (n = 1, 2, \dots)$,

$$\therefore a_1 = 1$$
, $i_1 = 1$, $i_2 = 2^2 = 4$, $i_3 = 3^2 = 9$,

$$S_1 = a_1 = 1$$
 , $S_{i_2} = S_4 = a_1 + a_2 + a_3 + a_4 = 1 + 2 + 3 + 4 = 10$,

$$S_{i_3} = S_9 = a_1 + a_2 + \dots + a_9 = 1 + 2 + \dots + 9 = 45$$
,

$$\therefore A_1 = S_4 - S_1 = 10 - 1 = 9, A_2 = S_9 - S_4 = 45 - 10 = 35$$

【小问2详解】

由题意,

在数列
$$\{a_n\}$$
中, $a_n = \left(-\frac{1}{2}\right)^{n-1} (n=1,2,\cdots)$, $a_1 = 1$

$$: S_n = \frac{1 \left[1 - \left(-\frac{1}{2} \right)^n \right]}{1 - \left(-\frac{1}{2} \right)} = \frac{2}{3} - \frac{2}{3} \times \left(-\frac{1}{2} \right)^n.$$

若
$$j$$
 为奇数,则 $S_{j+1} - S_j = a_{j+1} = \left(-\frac{1}{2}\right)^j < 0$.

所以 $j \notin \Omega$.

若j为偶数,则当 $k = j+1, j+2, \cdots$ 时,

$$S_k - S_j = \frac{2}{3} \times \left[\left(-\frac{1}{2} \right)^j - \left(-\frac{1}{2} \right)^k \right] \ge \frac{2}{3} \times \left[\left(\frac{1}{2} \right)^j - \left(\frac{1}{2} \right)^k \right] > 0.$$

所以 $j \in \Omega$.

所以 $\Omega = \{x | x = 2m, m = 1, 2, \dots\}$.

【小问3详解】

由题意证明如下,

在
$$\operatorname{sgn}(x) = \begin{cases} 1, & x > 0, \\ 0, & x = 0, +, \\ -1, & x < 0. \end{cases}$$

若 Ω 为有限集,设其最大元素为m(若 Ω 为空集,取m=0),

则当 $j = m+1, m+2, \cdots$ 时,存在 k > j满足 $S_k - S_j < 0$.

则
$$A_n = S_{i_{n+1}} - S_{i_n} < 0$$
.所以 $sgn(A_n) = -1(n = 1, 2, \dots)$;

若
$$\Omega$$
 为无限集,设 $\Omega = \{j_1, j_2, \cdots\}$,其中 $j_1 < j_2 < \cdots$,记 $B_n = S_{j_{n+1}} - S_{j_n}$,则 $B_n \ge 0$ $(n = 1, 2, \cdots)$.

①若数列 $\left\{B_n\right\}$ 中只有有限项为正数,记 $m = \max\left\{n \in \mathbf{N}^* | B_n > 0\right\}$ (若 $\left\{B_n\right\}$ 中没有正数项,取m = 0),则 $B_{m+n} = 0 (n = 1, 2, \cdots).$

$$\diamondsuit i_n = j_{m+n} \left(n = 1, 2, \cdots \right), \quad \text{for } A_n = S_{i_{n+1}} - S_{i_n} = B_{m+n} = 0 \left(n = 1, 2, \cdots \right).$$

所以
$$\operatorname{sgn}(A_n) = 0 (n = 1, 2, \cdots);$$

②若数列 $\{B_n\}$ 中有无穷项为正数,将这些项依次记为 B_{t_1},B_{t_2},\cdots ,其中 $t_1 < t_2 < \cdots$,则

$$B_n = S_{j_{n+1}} - S_{j_n} > 0 (n = 1, 2, \cdots).$$

$$\diamondsuit i_n = j_{t_n}(n=1,2,\cdots) \; , \quad \text{for } A_n = S_{j_{t_{n+1}}} - S_{j_{t_n}} = B_{t_n} + B_{t_n+1} + \cdots + B_{t_{n+1}-1} > 0 \; .$$

所以
$$\operatorname{sgn}(A_n) = 1(n = 1, 2, \cdots)$$
.

综上所述,对任意的无穷数列 $\{a_n\}$ 都存在数列 $\{i_n\}$,使得 $\{\operatorname{sgn}(A_n)\}$ 为常数列.

【点睛】关键点点睛:本题考查求数列的项,数列求和,无穷数列的证明,符号函数,考查学生的计算能力,逻辑思维能力和分类讨论能力,具有很强的综合性.

