2024-2025 新高三化学定位考试

相对原子质量 0-16 Na-23

第一部分

本部分共 14 题,在每题列出的四个选项中,选出最符合题目要求的一项。

1. 下列资源利用过程中,不涉及化学变化的是

A. 石油分馏

B. 煤的干馏

C. 发酵法制沼气

D. 海水提镁

2. 下列关于各物质的所属类别及性质的描述不正确的是

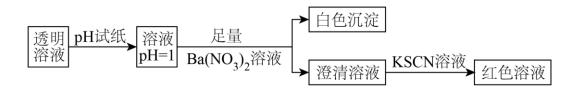
选项	А	В	С	D
物质	乙烯	氯化钠	氢氧化铁胶体	生铁
类别	烃	离子化合物	混合物	合金
性质	不可燃	熔融态能导电	能产生丁达尔现象	易发生电化学腐蚀

- 3.下列说法不正确的是
 - A. 原子光谱可用于鉴定氢元素

- C. 焰色试验可用于区分 NaCl 和 KCl D.分馏法可用于提高石油中乙烯的产量

B. 电解法可用于冶炼铝等活泼金属

- 4. 下列所用的物质中,利用了其氧化性的是
 - A. 用 Fe 粉防止 FeSO₄ 溶液氧化 B. 用 FeCl₃ 溶液腐蚀覆铜板
 - C. 用 SO₂的水溶液吸收 Br₂
- D. 用 Zn 块防止钢铁船体腐蚀
- 5. 设 N_A 为阿伏加德罗常数的值,下列说法正确的是
 - A. $6.2 \, \text{g Na}_2 \text{O}$ 中的离子总数为 $0.2 N_A$
 - B. 标准状况下, 5.6 L H₂O所含O—H的数目为0.5N_A
 - C. pH = 2的盐酸中的H+总数为 $0.01N_{A}$
 - D. 2.3 g Na和足量氧气反应转移电子数为0.1N_A
- 6. 室温下,1 体积的水能溶解约 40 体积的 SO_2 。用试管收集 SO_2 后进行如下实验。


对实验现象的分析正确的是

- A. 试管内液面上升,证明 SO_2 与 H_2O 发生了反应
- B. 试管中剩余少量气体,是因为 SO₂ 的溶解已达饱和
- C. 取出试管中溶液, 立即加入紫色石蕊试液, 溶液显红色, 原因是:

 $SO_2 + H2O \implies H_2SO_3$, $H_2SO_3 \implies H^{\dagger} + HSO_3^{-}$, $HSO_3^{-} \implies H^{\dagger} + SO_3^{2-}$

- D. 取出试管中溶液,在空气中放置一段时间后 pH 下降,是由于 SO₂ 挥发
- 7. 黄铁矿(FeS_2)催化氧化的化学方程式为: $2FeS_2+7O_2+2H_2O$ ===2 $FeSO_4+2H_2SO_4$ 。 已知 N_A 是阿伏加德罗常数的值,下列说法正确的是
 - A. FeSO₄和 H₂SO₄都是离子化合物,均属于强电解质
 - B. 0.1 mol L⁻¹ FeSO₄ 溶液中 Fe²⁺离子的浓度为 0.1 mol L⁻¹
 - C. FeSO₄ 既是被氧化得到的产物,又是被还原得到的产物
 - D. 当转移 2 mol 电子时,消耗氧气的体积(标准状况)约为 22.4 L
- 8. 常温下,下列各组离子在指定溶液中可能大量共存的是
 - A. 由水电离产生的 $c(OH^-) = 1 \times 10^{-12} \text{mol} \cdot L^{-1}$ 的溶液中: $HCO_3^- \setminus K^+ \setminus Na^+ \setminus SO_4^{2-}$
 - B. 含有大量Fe³⁺的溶液中: Al³⁺、OH⁻、Br⁻、Na⁺
 - C. pH = 0的溶液中: Na⁺、K⁺、S²⁻、SO₃²⁻
 - D. 能使酚酞变红的溶液中: Na+、Ba²⁺、Cl-、Br-
- 9. 下列离子方程式正确的是
 - A. 溴化亚铁溶液中通入过量氯气: 2Fe²⁺+4Br⁻+3Cl₂=2Fe³⁺+2Br₂+6Cl⁻
 - B. 硫酸中加入少量氢氧化钡溶液: H⁺+SO₄²⁻+Ba²⁺+OH⁻=BaSO₄ ↓ +H₂O
 - C. 苯酚钠溶液中通入少量二氧化碳: $2C_6H_5O^- + CO_2 + H_2O \rightarrow 2C_6H_5OH + CO_3^{2-}$
 - D. 硝酸银溶液中加入过量氨水: Ag⁺+NH₃·H₂O=AgOH↓+NH₄⁺
- 10. 某透明溶液中可能含有 H^+ 、 AI^{3+} 、 Mg^{2+} 、 Fe^{2+} 、 CI^- 、 OH^- 、 NO_3^- 、 $S_2O_3^{2-}$ 、 CO_3^{2-} 、 SO_4^{2-} 中的几种离子(浓度均为 $0.1 \text{mol} \cdot L^{-1}$)。常温下,对其进行如下实验操作:

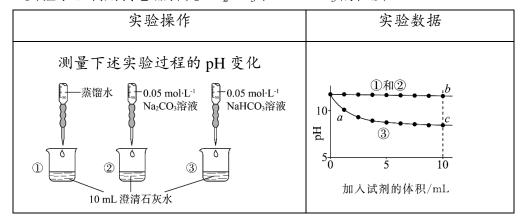
下列说法不正确的是

- A. 实验过程中有氧化还原反应发生
- B. 无法判断原溶液中是否含有 Mg²⁺
- C. 原溶液中一定不含 Al³⁺、Mg²⁺、OH⁻、NO₃、S₂O₃²⁻、CO₃²⁻
- D. 原溶液中一定含有 H⁺ 、Fe²⁺ 、Cl⁻ 、SO₄²⁻

- 11. 离子化合物 Na_2O_2 和 CaH_2 与水的反应分别为① $2Na_2O_2 + 2H_2O = 4NaOH + O_2$ 个;
 - ② $CaH_2 + 2H_2O = Ca(OH)_2 + 2H_2$ 个。下列说法正确的是
 - A. Na₂O₂、CaH₂中均有非极性共价键
 - B. ①中水发生氧化反应, ②中水发生还原反应
 - C. Na₂O₂中阴、阳离子个数比 1:2, CaH₂中阴、阳离子个数比为2:1
 - D. 当反应①和②中转移的电子数相同时,产生的O,和H,的物质的量相同
- 12. 氧化铈(CeO_2)是应用广泛的稀土氧化物。一种用氟碳铈矿($CeFCO_3$,含 BaO、 SiO_2 等杂质)为原料制备 CeO_2 ,的工艺如下图。

下列说法不正确的是

- A. 滤渣 A 的主要成分为 BaSO₄ 和 SiO₂
- B. 步骤①、②中均有过滤操作
- C. 该过程中, 铈元素的化合价变化了两次
- D. 步骤②反应的离子方程式为 $2Ce^{3+}+6HCO_3^-=Ce_2(CO_3)_3 \downarrow +3CO_2 \uparrow +3H_2O_3 \uparrow +3H_2O$
- 13. 某同学进行如下实验:


	实验	实验现象
i	将铜粉加入试管中,再加入稀 HNO ₃	溶液变蓝,液面上方呈浅红棕色;至 不再产生气泡时,铜粉有剩余,余液 呈酸性
ii	继续向 i 中试管加入少量 固体 NaNO ₃	又产生气泡,铜粉减少,液面上方呈 浅红棕色
iii	取饱和 Cu(NO ₃) ₂ 溶液,加 入少量固体 NaNO ₃ 和铜粉	无明显变化

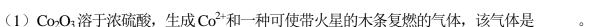
下列说法不正确的是

- A. HNO₃ 氧化性的强弱与其浓度大小有关
- B. i、ii中铜粉减少的原因能用相同的离子反应解释
- C. i 中余液呈酸性的主要原因是 Cu²⁺ + 2H₂O ← Cu(OH)₂ + 2H⁺

- D. 用一定浓度的 H₂SO₄与 NaNO₃ 能使铜粉溶解
- 14. 实验小组利用传感器探究 Na₂CO₃ 和 NaHCO₃ 的性质。

下列分析不正确的是

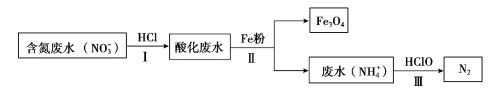
- A. ①与②的实验数据基本相同,说明②中的OH⁻未参与该反应
- B. 加入试剂体积相同时,②所得沉淀质量大于③所得沉淀质量
- C. 从起始到 a 点过程中反应的离子方程式为: $Ca^{2+} + 2OH^- + 2HCO_3^- = CaCO_3 \downarrow + 2H_2O + CO_3^{2-}$
- D. b 点对应溶液中水的电离程度小于 c 点对应溶液中水的电离程度


第二部分

15. 某钴矿石的主要成分有 CoO、 Co_2O_3 、MnO、 Fe_2O_3 、MgO 和 SiO_2 等。由该矿石粉制备 CoC_2O_4 固体的方法如下(部分催化剂已略)。

已知: 金属离子沉淀的 pH:

	Fe ³⁺	Fe ²⁺	Mg^{2+}	Mn ²⁺	Co ²⁺
开始沉淀时	1.5	6.3	8.9	8.2	7.4
完全沉淀时	2.8	8.3	10.9	10.2	9.4



- (2)向溶液 1 中加入 NaOH 溶液,将 Fe³⁺转化为 Fe(OH)₃ 沉淀,应调节 pH 至少大于____。
- (3) 向溶液 2 中加入 NaF 溶液,去除的离子是____。
- (4) 向溶液 3 中加入氨水和过氧化氢溶液,将 Co^{2+} 转化为 $Co(NH_3)_6^{3+}$ 。

补充完整下列离子方程式:

$$_{\text{Co}^{2+}}+_{\text{H}_2O_2}+_{\text{NH}_3}-_{\text{Co}(\text{NH}_3)_6}^{3+}+_{\text{L}_2O_2}$$

- (5) 溶液 4 中,若将 1 mol Co(NH₃)₆³⁺全部转化为 CoC₂O₄ 沉淀,需要消耗(NH₄)₂C₂O₄ _____mol。
- (6) 关于上述流程,下列说法正确的是____(填序号)。
 - a. 若矿石粉中存在少量 FeO, 经上述流程也可制得纯度相同的 CoC₂O₄
 - b. 向溶液 3 中加入氨水,作用仅是调节溶液的 pH
 - c. 流程中, 仅通过调节溶液的 pH 无法将金属元素完全分离
- 16. 用零价铁(Fe)去除含氮废水中的硝酸盐(NO_3^-)是环境修复的重要方法。一种去除 NO_3^- 的研究过程如下。

(1)	II 中充分反应后,	分离混合物的方	法是	0
(2)	II中反应的离子方	万程式是	_ •	
			2 -	

(3) 实验发现,	在Ⅱ中补充一	一定量的 Fe ²⁺ ī	可以明显	提高NO3的去除率。	向两份含氮废水
$[n(NO_3^-) =$	8.1×10^{-5} mol]中均加入足量	上Fe 粉,	做对比研究。	

实验序号	i	ii
所加试剂	Fe 粉	Fe 粉、FeCl ₂ (3.6×10 ⁻⁵ mol)
NO ₃ 的去除	≈50%	≈100%
率		

分析 ii 中 NO3 去除率提高的原因:

a. Fe^{2+} 直接还原 NO_3^- 。

通过计算说明电子得、失数量关系: _____, 证明该原因不合理。

- b. 研究发现: Fe_3O_4 (导电)覆盖在铁粉表面;随着反应的进行,产生 FeO(OH) (不导电),它覆盖在 Fe_3O_4 表面,形成钝化层,阻碍电子传输。
- c. Fe²⁺能与 FeO(OH)反应生成 Fe₃O₄。用 ⁵⁷FeCl₂做同位素示踪实验,证明该原因合理。
- d. Cl¯破坏钝化层。

将ii中的 $FeCl_2$ 替换为_____, NO_3^- 的去除率约为50%,证明该原因不合理。

- (4) i、ii 中均能发生 $Fe + 2H^+ = Fe^{2+} + H_2 \uparrow$ 。该反应明显有助于 i 中 NO_3^- 的去除,结合方程式解释原因: _____。
- (5) 测定 NO₃ 含量

步骤 1. 取 v mL 含氮(NO_3^-)水样,加入催化剂、 v_1 mL c_1 mol L^{-1} FeSO₄ 标准溶液(过量),再加入稀 H_2SO_4 。

步骤 2. 用 c_2 mol L^{-1} $K_2Cr_2O_7$ 标准溶液滴定剩余的 Fe^{2+} $(Cr_2O_7^{2-}$ 被还原为 $Cr^{3+})$,终点时消耗 v_2 mL。

己知: 3Fe²⁺ + NO₃ + 4H⁺ = NO↑ + 3Fe³⁺ + 2H₂O

- ① 水样中 NO₃ 的含量为_____mol L⁻¹。
- ② 溶液中 O_2 影响测定。向步骤 1 中加入适量 $NaHCO_3$,产生 CO_2 驱赶 O_2 ,否则会 使测定结果______(填"偏大"或"偏小")。

17. 某小组探究 H₂O₂ 氧化性、还原性的变化规律。

资料: $Na_2O_2 + 2H_2O = 2NaOH + H_2O_2$ 、 $2H_2O_2 = 2H_2O + O_2$ ↑

(1)制备H₂O₂:将Na₂O₂溶于冰水中,产生少量气泡,得溶液A。向A中加入过量稀H₂SO₄,得溶液B。

 $溶Na_2O_2$ 用冰水,目的是_____。

- (2) 检验 H₂O₂: 向溶液 A、B 中分别滴加适量酸性 KMnO₄溶液。
 - I.B中产生气泡,滴入的溶液紫色褪去。

MnO₄ 发生还原反应: MnO₄ + 5e + 8H = Mn²⁺ + 4H₂O H₂O₂ 发生氧化反应: _____。

II. A 中滴入的溶液紫色褪去,有棕褐色固体生成,产生大量气泡。推测固体可能含 MnO₂,对其产生的原因提出猜想:

猜想 1. MnO₄ 有氧化性,能被还原为 MnO₂

猜想 2. Mn^{2+} 有_____性,能与 H_2O_2 反应产生 MnO_2

猜想 3. ……

(3) 探究猜想 2 的合理性, 并分析 I 中没有产生棕褐色固体的原因, 设计实验如下:

序号	实验	试剂	现象		
i	♪溶液 X	a	生成棕褐色固体,产生大量气泡		
ii	Í .	b	有少量气泡		
iii	 试剂	H ₂ O ₂ 溶 液	有少量气泡		

iii是ii和 i 的对照实验。

- ③ 取 i 中棕褐色固体,滴加浓盐酸,加热,产生黄绿色气体。
- (4) 向一定浓度的 H_2O_2 溶液中加入少量 MnO_2 ,迅速产生大量气泡;随后加入 H_2SO_4 ,固体溶解,气泡产生明显减弱。结合方程式解释原因
- (5) 综上, H_2O_2 做氧化剂还是做还原剂,与_____等因素有关。

AADBDCC DABCCCC

15.

- (1) O_2 (2) 2.8 (3) Mg^{2+}
- (4) $2\text{Co}^{2+} + 1 \text{ H}_2\text{O}_2 + 12\text{NH}_3 = 2\text{Co}(\text{NH}_3)_6^{3+} + 2\text{OH}^{-}$
- (5) 1.5 (6) ac

16.

- (1) 过滤
- (2) $3\text{Fe} + \text{NO}_{3}^{-} + 2\text{H}^{+} + \text{H}_{2}\text{O} = = \text{Fe}_{3}\text{O}_{4} + \text{NH}_{4}^{+}$
- (3)a. 还原 NO_3 所需电子为 3.24×10^{-4} mol, Fe^{2+} 提供的电子最多为 3.6×10^{-5} mol (或 Fe^{2+} 提供 2.4×10^{-5} mol电子), Fe^{2+} 失去的电子数明显少于 NO_3 所需的电子数。
 - d. 7.2×10^{-5} molNaCl
 - (4) Fe²⁺+ 2FeO(OH)===Fe₃O₄+2H⁺, Fe²⁺破坏了钝化层
- - ②偏大

17.

- (1) 降低温度,减缓H₂O₂分解
- (2) I. $H_2O_2-2e-==O_2 \uparrow + 2H^+$ II. 还原

- $2H_2O_2$, NaOH; H_2O_2 , H_2SO_4 MnO_2
- $(4)2H_2O_2 == 2H_2O + O_2 \uparrow ; MnO_2 + 2H^+ + H_2O_2 == Mn^{2+} + 2H_2O + O_2 \uparrow ; 前者MnO_2$ 做催化剂,后者做氧化剂。
- (5) 其他反应物的氧化性、还原性,溶液的酸碱性

