北师大实验中学 2024-2025 学年第一学期开学摸底测验

高二数学

2024年8月

本试卷共 4 页, 共 150 分。考试时长 90 分钟。考生务必将答案答在答题卡上,在试卷上作答 无效。考试结束后,将本试卷和答题卡一并交回。

第一部分 (选择题, 共 40 分)

一、选择题共 10 小题,每小题 4 分,共 40 分,在每小题列出的四个选项中,选出符合题目要求 的一项。

(A)
$$\frac{1}{2}$$
 (B) $\frac{\sqrt{2}}{2}$ (C) $\frac{\sqrt{3}}{2}$

4. 在
$$\triangle ABC$$
 中, $\frac{b}{\cos B} = \frac{c}{\sin C}$, 则 $\angle B =$
(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

(D) 1

5. 已知 l,m 是两条不同的直线, α,β 是两个不同的平面, 下列命题正确的是 (A) 若 $m \perp \alpha, \alpha \perp \beta$, 则 $m // \beta$ (B) 若 $\alpha \cap \beta = l, l // m$, 则 $m // \beta$ (C) 若 $m \subset \alpha, \alpha \perp \beta$, 则 $m \perp \beta$ (D) 若 $m \perp \alpha, \alpha // \beta$, 则 $m \perp \beta$

6. 下列函数中,以 π 为最小正周期,且在区间 $\left(0,\frac{\pi}{2}\right)$ 上单调递增的是 (A) $y = \tan\left(x + \frac{\pi}{4}\right)$ (B) $y = |\sin x|$ (C) $y = \cos 2x$ (D) $y = \sin\left(x - \frac{\pi}{4}\right)$ 7. 将函数 $y = \sin\left(2x + \frac{\pi}{3}\right)$ 的图象向右平移 $\frac{\pi}{2}$ 个单位长度,得到的图象关于点 (φ ,0) 对称,则

7. 将函数 $y = \sin\left(2x + \frac{1}{3}\right)$ 的图象问石平移 $\frac{1}{2}$ 个单位长度,得到的图象天于点 $(\varphi, 0)$ 对称,则 $|\varphi|$ 的最小值为 (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

8. 在
$$\triangle ABC$$
 中,已知 $a = 2, A = \frac{\pi}{3}$,则下列说法正确的是

(A) 当 b = 1 时, $\triangle ABC$ 是锐角三角形(B) 当 $b = \frac{4\sqrt{3}}{3}$ 时, $\triangle ABC$ 是直角三角形(C) 当 $b = \frac{7}{3}$ 时, $\triangle ABC$ 是钝角三角形(D) 当 $b = \frac{5}{3}$ 时, $\triangle ABC$ 是等腰三角形

- 9. 已知 a, b 是非零向量,则" $a \perp b$ "是"对于任意的 $\lambda \in \mathbf{R}$,都有 $|a + \lambda b| = |a \lambda b|$ 成立"的
 - (A) 充分而不必要条件
- (B) 必要而不充分条件
- (C) 充分必要条件
- (D) 既不充分也不必要条件

10. 海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.一般早潮叫潮,晚潮叫汐.在通常 情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮时返回海洋.下面是某港口在某季节某 天的时间与水深值(单位:m)的部分记录表.

时间	0:00	3:00	6:00	9:00	12:00	
水深值	5.0	7.5	5.0	2.5	5.0	

据分析,这个港口的水深值与时间的关系可近似地用三角函数来描述. 试估计 13:00 的水深 值为

 $(A) \ 3.75 \qquad \qquad (B) \ 5.83 \qquad \qquad (C) \ 6.25 \qquad \qquad (D) \ 6.67$

二、填空题共 5 小题,每小题 5 分,共 25 分。

- 11. 已知 z(1+i) = 2i,则 $|z| = ____.$
- 12. 在平面直角坐标系 xOy 中,角 α 与角 β 均以 Ox 为始边,它们的终边关于 y 轴对称,若角 α 的终边与单位圆交于点 $P\left(\frac{3}{5}, m\right)$,则 $\cos \beta =$ _____.
- 13. 已知菱形 ABCD 的边长为 2, $\angle BAD = 60^\circ, \overrightarrow{BC} = 2\overrightarrow{BP}, \cup \overrightarrow{AP} \cdot \overrightarrow{BD} =$
- 14. 陀螺是中国民间的娱乐工具之一,早期陀螺的形状由同底的一个 圆柱和一个圆锥组合而成(如图).已知一木制陀螺模型内接于 一表面积为 16π cm² 的球,其中圆柱的两个底面为球的两个截面,圆锥的顶点在该球的球面上,若圆柱的高为 2 cm,则该圆柱的侧 面积为_____cm²,该陀螺的体积为_____cm³.

- 15. 在棱长为 1 的正方体 $ABCD A_1B_1C_1D_1$ 中, E, F, G 分别为棱 AA_1, C_1D_1, CC_1 的中点,动点 H 在平面 EFG 内,且 DH = 1. 给出下列四个结论:
 - ① $A_1B // 平面 EFG;$
 - ② 点 H 轨迹的长度为 π;
 - ③ 存在点 H, 使得直线 $DH \perp$ 平面 EFG;
 - ④ 平面 *EFG* 截正方体所得的截面面积为 $\frac{3\sqrt{3}}{4}$.

其中所有正确结论的序号是_____

第二部分 (非选择题,共110分)

三、解答题共 6 小题, 共 85 分。解答题应写出文字说明, 验算步骤或证明过程。

- 16. (13 分) 已知函数 $f(x) = \sin\left(x - \frac{\pi}{6}\right) + \sin\left(x + \frac{\pi}{2}\right)$.
- (I) 求 f(0) 的值和 f(x) 的零点;
- (II) 求 f(x) 的单调递增区间.

17. (14分)

如图,在长方体 $ABCD - A_1B_1C_1D_1$ 中, $AB = BC = 2, CC_1 = 4, E$ 为 CC_1 的中点.

- (I) 求证: $AC_1 // 平面 EDB$;
- (II) 求证:平面 $EDB \perp$ 平面 ACC_1 ;
- (III) 求点 C 到平面 EDB 的距离.

- 18. (14 分) 已知 $\overrightarrow{OA} = \boldsymbol{a}, \overrightarrow{OB} = \boldsymbol{b}, |\boldsymbol{a}| = \sqrt{2}, |\boldsymbol{b}| = 1, < \boldsymbol{a}, \boldsymbol{b} >= \frac{\pi}{4}.$
- (I) $\bar{\mathfrak{R}} |\boldsymbol{a} 2\boldsymbol{b}|;$
- (II) 若 $\overrightarrow{OQ} = t\overrightarrow{OA}$, 求 $\overrightarrow{AQ} \cdot (\overrightarrow{OQ} \overrightarrow{OB})$ 的最小值.
- 19. (14 分) 在 $\triangle ABC$ 中, $b + 2c - 2a \cos B = 0$.
- (I) $\overline{\mathfrak{R}} \angle A;$
- (II) 若 $\triangle ABC$ 的面积是 $\frac{\sqrt{3}}{2}$, 求 a 的最小值.

20. (15分)

如图 1, 在 $\triangle ABC$ 中, AB = 3, AC = 4, BC = 5, D, E 分别为 AC, BC 的中点. 将 $\triangle CDE$ 沿 DE 折起到 $\triangle C_1 DE$ 的位置, 得到四棱锥 $C_1 - DABE$, 如图 2.

- (I) \overline{X} \overline{U} : $DE \perp C_1A$;
- (II) 若 M 是线段 C₁B 上的点,平面 DEM 与线段 C₁A 交于点 N,再从条件①、条件①、条件①
 这三个条件中选择一个作为已知,使点 M 唯一确定,并解答问题.
 - i. 求证: *N* 为 *C*₁*A* 的中点;
 - ii. 求证: $C_1 A \perp$ 平面 DEMN.
 - 条件①: $C_1M = MB$;
 - 条件②: DE // NM;
 - 条件③: $EM \perp C_1B$.

如果选择的条件不符合要求,第(II)问得 0 分;如果选择多个符合要求的条件分别解答,按第一个解答计分.

21. (15分)

已知 n 维向量 $\mathbf{a} = (a_1, a_2, \dots, a_n)$, 给定 $k \in \{1, 2, \dots, n-1\}$, 定义变换 φ_k : 选取 $i \in \{0, 1, \dots, n-1\}$, 再选取一个实数 x, 对 \mathbf{a} 的坐标进行如下改变:

- 若此时 $i + k \leq n$, 则将 $a_{i+1}, a_{i+2}, \dots, a_{i+k}$ 同时加上 x, 其余坐标不变; 若此时 i + k > n, 则将 $a_{i+1}, a_{i+2}, \dots, a_n$ 及 $a_1, a_2, \dots, a_{i+k-n}$ 同时加上 x, 其余坐标不变. 若向量 a 经过有限次变换 φ_k (每次变换所取的 i, x 的值可能不同) 后, 最终得到的向量
- (t_1, t_2, \dots, t_n) 满足 $t_1 = t_2 = \dots = t_n$,则称 a 为 k 阶可等向量, 例如,向量 (1,3,2) 经过两次变换 φ_2 可得: $(1,3,2) \xrightarrow{i=2,x=1} (2,3,3) \xrightarrow{i=1,x=-1} (2,2,2)$,所以 (1,3,2) 是 2 阶可等向量.
- (I) 判断 (1,2,3) 是否是 2 阶可等向量? 说明理由;
- (II) 若取 1,2,3,4 的一个排序得到的向量 (a_1, a_2, a_3, a_4) 是 2 阶可等向量, 求 $a_1 + a_3$;
- (III) 若任取 a₁, a₂, ..., a_n 的一个排序得到的 n 维向量均为 k 阶可等向量,则称 (a₁, a₂, ..., a_n) 为 k 阶强可等向量. 求证: 向量 (1,2,3,4,5,6,7) 是 5 阶强可等向量.

答案

一、选择题共 10 小题,每小题 4 分,共 40 分,在每小题列出的四个选项中,选出符合题目要求的 一项。

题号	1	2	3	4	5	6	7	8	9	10
答案	С	С	В	В	D	В	Α	В	С	С

二、填空题共5小题,每小题5分,共25分。

11. $\sqrt{2}$.

- 12. $-\frac{3}{5}$.
- 13. -1.
- 14. $4\sqrt{3}\pi, 7\pi$.
- 15. (12)(4).

14 题第一个空 2 分,第二个空 3 分,15 题的采分点为 0,3,5 分,有错误不给分. 三、解答题共 6 小题,共 85 分。解答题应写出文字说明,验算步骤或证明过程。

数学试题第5页(共8页)

(II) 因为 $CC_1 \perp$ 平面 ABCD, 所以 $CC_1 \perp BD$. 因为在长方体 $ABCD - A_1B_1C_1D_1$ 中, AB = BC, 所以底面 ABCD 为正方形. 所以 AC ⊥ BD. 又因为 $AC \cap CC_1 = C$, 所以 $BD \perp$ 平面 ACC_1 . (III) 在 $\triangle EFC$ 中, 过 C 作 CG $\perp EF$, 垂足为 G. 因为平面 $EDB \perp$ 平面 ACC_1 , 平面 $EDB \cap$ 平面 $ACC_1 = EF, CG \subset$ 平面 ACC_1 , 所以 $CG \perp$ 平面 EDB. 因为 AB = BC = 2, 所以 $FC = \sqrt{2}$. 因为 $CC_1 = 4, E$ 为 CC_1 的中点,所以 EC = 2. 所以 $CG = \frac{FC \cdot EC}{EF} = \frac{2\sqrt{3}}{3}.$ $=\sqrt{a^2-4a\cdot b+4b^2}$ (II) $\boxtimes \nexists \overrightarrow{AQ} \cdot (\overrightarrow{OQ} - \overrightarrow{OB}) = (t\overrightarrow{OA} - \overrightarrow{OA}) \cdot (t\overrightarrow{OA} - \overrightarrow{OB})$ $= (t^2 - t) \overrightarrow{OA}^2 - (t - 1) \overrightarrow{OA} \cdot \overrightarrow{OB} = 2 (t^2 - t) - (t - 1) = 2t^2 - 3t + 1 \cdots 11 \cancel{C}$ $=2\left(t-\frac{3}{4}\right)^{2}-\frac{1}{8} \ge -\frac{1}{8}$

19.	解: (I) 因为 $b + 2c - 2a \cos B = 0$.
	所以 $b + 2c - 2a \cdot \frac{a^2 + c^2 - b^2}{2ac} = 0$. 所以 $bc + c^2 - a^2 + b^2 = 0$.
	所以 $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = -\frac{1}{2}.$
	因为 $A \in (0,\pi)$, 所以 $\angle A = \frac{2\pi}{3}$
	(II) 因为 $\triangle ABC$ 的面积是 $\frac{\sqrt{3}}{2}$,
	由 (I) 知 $\angle A = \frac{2\pi}{3}$,
	所以 $S_{\triangle ABC} = \frac{1}{2}bc \sin A = \frac{\sqrt{3}}{4}bc = \frac{\sqrt{3}}{2}$. 所以 $bc = 2$.
	由 (I) 知 $a^2 = bc + c^2 + b^2 \ge 3bc$ (当且仅当 $b = c = \sqrt{2}$ 时,取等号)
	所以 a 的最小值为 √6. ······14 分
20.	解:(I) 因为在 $\triangle ABC$ 中, $AB = 3, AC = 4, BC = 5,$
	所以 $AB \perp AC$.
	因为 D, E 分别为 AC, BC 的中点
	所以 $DE //AB$. 所以 $DE \perp AC$.
	所以 $DE \perp C_1 D, DE \perp AD$.
	又因为 $C_1 D \cap AD = D$, 所以 $DE \perp$ 平面 $C_1 AD$.
	又因为 $C_1A \subset$ 平面 C_1AD ,所以 $DE \perp C_1A$
	(II) 选择条件①: $C_1 M = MB$.
	(i) 因为因为 $DE /\!\!/ AB$, 又因为 $DE \not\subset$ 平面 $C_1AB, AB \subset$ 平面 C_1AB ,
	所以 $DE //$ 平面 C_1AB .
	又因为 $DE \subset $ 平面 $DEMN$, 平面 $DEMN \cap $ 平面 $C_1AB = NM$,
	所以 DE // NM.
	又因为 DE // AB, 所以 NM // AB.
	因为 $C_1 M = MB$, 所以 $C_1 N = NA$. 即 N 为 $C_1 A$ 的中点 ···································
	(ii) 因为 $DC_1 = DA$, 由 (i) 得 $C_1N = NA$,
	所以 $DN \perp C_1 A$.
	由 (I) 得 $DE \perp C_1 A$, 又因为 $DN \cap DE = D$,
	所以 $C_1 A \perp$ 平面 DEMN15 分
	选择条件③: $EM \perp C_1B$.
	又因为 $EC_1 = EB$, 所以 $C_1M = MB$.
	以下同选条件①.

例如经过两次变换 φ_2 可得: $(1,2,3) \xrightarrow{i=3,x=1} (2,3,3) \xrightarrow{i=1,x=-1} (2,2,2) \cdots 4$ 分 (II) 设 (a_1, a_2, a_3, a_4) 进行一次变换 φ_2 后得 (a'_1, a'_2, a'_3, a'_4) , 当i = 1时, $(a'_1, a'_2, a'_3, a'_4) = (a_1, a_2 + x, a_3 + x, a_4)$ 当i=3时, $(a'_1, a'_2, a'_3, a'_4) = (a_1 + x, a_2, a_3, a_4 + x)$ 综上, 我们得到 $(a'_1 + a'_3) - (a'_2 + a'_4) = (a_1 + a_3 + x) - (a_2 + a_4 + x) = (a_1 + a_3) - (a_2 + a_4).$ 因为 (a_1, a_2, a_3, a_4) 是 2 阶可等向量,即 $t_1 = t_2 = t_3 = t_4$ 所以 $(a_1 + a_3) - (a_2 + a_4) = (t_1 + t_3) - (t_2 + t_4) = 0.$ (III) 任取 $(1, 2, \dots, 7)$ 的一个排序,记为 $b = (b_1, b_2, \dots, b_7)$. 注意到, (a_1, a_2, \dots, a_n) 是 k 阶可等向量, 等价于 $(a_1 + y, a_2 + y, \dots, a_n + y)$ 是 k 阶可等向 量 变换 φ₅ 即对连续五个维度的坐标(首尾也看成连续)同时加上 x,相当于对剩余两个连续 维度的坐标同时加上-x. 对 $b_2, b_3; b_4, b_5; b_6, b_7$ 依次加上 -x, 相当于对 b_1 单独加上 x;对 $b_3, b_4; b_5, b_6; b_7, b_1$ 依次加上 -x, 相当于对 b_2 单独加上 x;基于上述分析,相当于可以对 b_1, b_2, \dots, b_7 分别单独加上 $-b_1, -b_2, \dots, -b_7$.

数学试题第8页(共8页)