北京一零一中 2024-2025 学年度高三第一次月考

化学

2024年8月26日

友情提示:

本试卷分为I卷、II卷两部分,共 19 道小题,共 10 页,满分 100 分;答题时间为 90 分钟; 请将答案写在答题纸上。

可能用到的相对原子质量: C 12 V 51

I卷 选择题(共 42 分)

(共14道小题,每小题只有一个选项符合题意,每小题3分。)

1. 下列我国古代的技术应用中,其工作原理不涉及化学反应的是

A. 转轮排字	B. 粮食酿酒	C. 火药使用	D. 铁的冶炼

- 2. 下列化学用语或图示表达不正确的是
 - A. NaCl 的电子式: Na⁺[:Ci:]
 - B. SO₃²-的 VSEPR 模型:

C. 反-2-丁烯的分子结构模型:

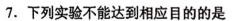
D. HF 分子中 σ 键的形成示意图:

- 3. 2023 年诺贝尔化学奖授予对量子点的发现有突出贡献的科研工作者。量子点是指尺寸在纳 米量级(通常 2~20 nm)的半导体晶体,其中铜铟硫(CuthS2)量子点被广泛用于光电探
 - 测、发光二极管以及光电化学电池领域。下列说法不正确的是
 - A. 制备过程中得到的 CuInS2 量子点溶液能够产生丁达尔效应
 - B. 可利用 X 射线衍射技术解析量子点的晶体结构
 - C. 基态 Cu⁺的价层电子排布式为 3d¹⁰
 - D. 已知 In 的原子序数为 49, 可推知 In 位于元素周期表第四周期

4. 由键能数据大小,不能解释下列事实的是

化学键	С-Н	Si-H	C=O	C-O	Si-O	C-C	Si-Si
键能/kJ·mol-l	411	318	799	358	452	346	222

A. 稳定性: CH₄>SiH₄


B. 熔点: CO₂へSiO₂

C. 硬度: 金刚石>晶体硅

- D. 键长: Q=O<C-O
- 5. 阿明洛芬是一种抗炎镇痛药物,可用于治疗慢性风湿性关节炎,其分子结构如下图。

下列说法不正确的是

- A. 分子中含有手性碳原子
- B. 所有的碳原子不可能共面
- C. 1 mol 该物质最多能与 5 mol H₂发生加成反应
- D. 该物质可发生取代反应、加聚反应、缩聚反应
- 6. 用 NA 代表阿伏加德罗常数的值。下列说法正确的是
 - A. 12 g 金刚石中 C-C 键的数目为 4NA
 - B. 1 mol 羟基含有的电子数目为 10NA
 - C. 1 mol N₂与 5 mol H₂充分反应可生成 NH₃的数目为 2N_A
 - D. 11.2 L Cl₂ (标况下)与足量的铁粉反应,转移的电子数为 NA

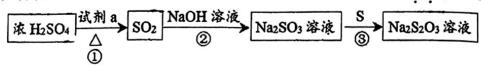
	A	В	С	D		
实验		Na ₂ CO ₃ NaHCO ₃ 即体 · · · · · · · · · · · · · · · · · ·	NH ₄ Cl和 Ca(OH) ₂ 株花	包 和 NaHCO ₃ 溶液		
目	由 FeCl ₃ ·6H ₂ O 制取	比较 Na ₂ CO ₃ 和	实验室	除去 CO2 中混有		
的	无水 FeCl3 固体	NaHCO ₃ 的热稳定性	制取氨气	的少量 SO₂		

- 8. 下列方程式与所给事实相符的是
 - A. 向 NaOH 溶液中通入少量 Cl₂制漂白液: Cl₂+OH⁻=HClO+Cl⁻

 - C. 向苯酚钠溶液中通 CO₂,溶液变浑浊: **()** O⁻+H₂O+CO₂→**()** OH+HCO₃⁻
 - D. 用稀 HNO₃ 处理银镜反<u>概</u>后试管内壁的 Ag: Ag+2H⁺+NO₃⁻=Ag⁺+NO₂↑+H₂O

9. 根据下列实验操作和现象所得出的结论正确的是

选项	实验操作和现象	结 论		
A	用蒸馏水溶解 CuCl ₂ 固体,并继续加水,溶液由绿色逐 渐变为 蓝色	c(H ₂ O)增大,使 [CuCl ₄] ²⁻ +4H ₂ O — [Cu(H ₂ O) ₄] ²⁺ +4Cl ⁻ 正向移动		
В	将木炭与浓硫酸共热产生的气体通入 惶 水中, 溴水褪色	SO ₂ 具有漂白性:		
С	向某补铁口服液中滴加几滴酸性 KMnO4 溶液,溶液紫色褪去	该补铁口服液中一定含有 Fe ²⁺		
D	将浓硫酸滴到蔗糖表面,固体变黑、膨胀, 有刺激性气味的气体产生	浓硫酸有脱水性和强氧化性		


- 10. 还原铁粉与水蒸气的反应装置如下图所示。取少量反应后的固体加入稀硫酸使其完全溶解 得溶液 a; 另取少量反应后的固体加入稀硝酸使其完全溶解,得溶液 b。下列说法正确 的是
 - A. 铁与水蒸气反应: 2Fe+3H₂O(g) <u>高温</u> Fe₂O₃+3H₂
 - B. 肥皂液中产生气泡,不能证明铁与水蒸气反应生成 H2
 - C. 向溶液 a 中滴加 K₃[Fe(CN)₆]溶液,出现蓝色沉淀, 说明铁粉未完全反应
 - D. 向溶液 b 中滴加 KSCN 溶液,溶液变红,证实了固体中含有 Fe₂O₃

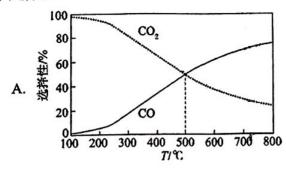
11. 单体 M 通过不同的聚合方式可生成聚合物 A 和聚合物 B, 转化关系如下。

下列说法不正确的是

- A. 单体 M 生成聚合物 B 的反应为加聚反应
- B. 聚合物 A 的重复结构单元中含有的官能团和单体 M 中的不同
- C. 在酸性或碱性的水溶液中,聚合物 B 的溶解程度比在水中的均提高
- D. 聚合物 B 解聚生成单体 M, 存在断开 C-C σ 键,形成 C-C π 键的过程
- 12. 几种含硫物质的转化如下图(部分反应条件略去),下列判断不正确的是

- A. ①中, 试剂 a 可以是 Fe
- B. ②中,需要确保 NaOH 溶液足量
- C. ③中,将 S 换为 Cl₂,氧化产物为 Na₂SO₄
- D. ③中, 生成 1 mol Na₂S₂O₃时 转移 4 mol 电子 第 3 页 共 10 页

13. 乙醇-水催化重整发生如下反应:


I.
$$C_2H_5OH(g)+3H_2O(g) \Longrightarrow 2CO_2(g)+6H_2(g)$$
 $\Delta H_1 = +174 \text{ kJ·mol·l}$

II.
$$CO_2(g)+H_2(g) \Longrightarrow CO(g)+H_2O(g)$$

 $\Delta H_2 = +41 \text{ kJ·mol}^{-1}$

(x=1 或 2)

恒压条件下, 当投料比 $n_{\#}(C_2H_5OH):n_{\#}(H_2O)=1:3$ 时, 体系达到平衡时 CO_2 和 CO 的选择 性随温度的变化如下图所示。

已知: i. COx的选择性=

$$\frac{n_{\pm \text{rd}(\text{CO}_x)}}{n_{\pm \text{rd}(\text{CO}_2)} + n_{\pm \text{rd}(\text{CO})}} \times 100\%$$

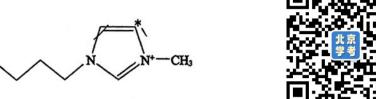
ii. 706℃时,反应II的平衡常数为 1

下列说法不正确的是

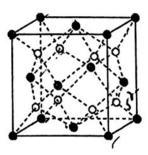
- A. $C_2H_5OH(g)+H_2O(g) \Longrightarrow 2CO(g)+4H_2(g)$ $\Delta H = +256 \text{ kJ·mol}^{-1}$
- B. 当 T=706°C时, 平衡体系中 H₂和 H₂O 的物质的量: n(H₂)<n(H₂O)
- C. 当 T=500℃时,体系中总反应: C2H5OH+2H2O == CO+CO2+XH2
- D. 恒温恒压条件下,向体系中充入氩气,可以提高 Lb 的平衡产率
- 14. 有研究表明,铜和稀 HNO3 反应后的溶液中有 HNO2。取铜丝和过量稀 HNO3 反应一段 时间后的蓝色溶液分别进行实验①~④,操作和现象如下表。...

序号	操作	现象
1	向 2 mL 该溶液中加入几滴浓 NaOH 溶液, 振荡	溶液变为浅绿色
2	向 2 mL 该溶液中滴加酸性 KMnO4溶液	紫红色褪去
3	将2mL 该溶液充分加热后冷却,再滴加酸性 KMnO4溶液	
4	用玻璃棒蘸取该溶液滴到淀粉碘化钾试纸上	溶液变蓝

已知: HNO2 受热发生分解反应: 2HNO2=NO2↑+NO↑+H2O;

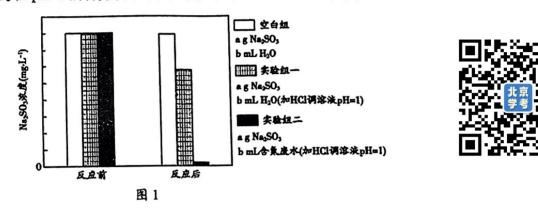

[Cu(NO₂)₄]²在溶液中呈绿色。

下列推断或分析不合理的是

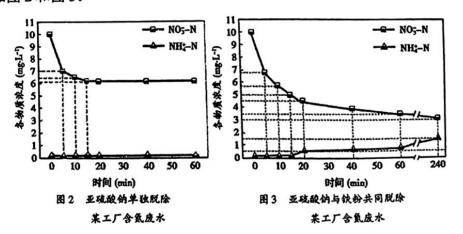

- A. ①说明 HNO₂存在电离平衡: HNO₂ ── H++NO₂ ¯
- B. ②说明 HNO₂ 具有还原性
- C. ③中,紫红色不褪去
- D. ④说明 HNO₂ 具有氧化性

Ⅱ卷 非选择题(共58分)

- 15. (9分) 锂电池的电解液是目前研究的热点。
 - (1) 锂电池的电解液可采用溶有 LiPF₆的碳酸酯类有机溶液。
 - ① 基态 Li⁺的电子云轮廓图的形状为。
 - ② P 元素位于 区,某基态原子的价层电子轨道表示式为____。
 - (2) 为提高锂电池的安全性,科研人员采用离子液体作电解液。某种离子液体的阳离子的 结构简式如下,阴离子为 PF。

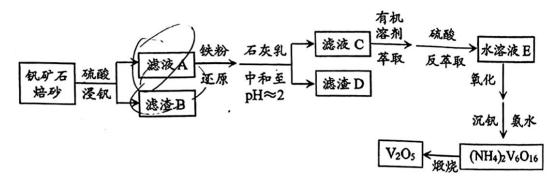


- ① N、F、P 三种元素的电负性由大到小的顺序为____。
- ② 该阳离子中,带"*"的 C 原子的杂化轨道类型为____杂化。
- ③ 根据 VSEPR 模型,PF₆ 的中心原子上的价层电子对数为_____,空间结构为 正八面体形。
- (3) Li₂S 因其良好的锂离子传输性能可作锂电池的固体电解质,其晶胞结构示意图如下图 所示,晶胞的边长为 a pm (1 pm=10⁻¹⁰ cm)。



- ① 晶胞中的"O"代表 (填"Li⁺"或"S²⁻")。
- ② 距离 Li⁺ 最近的 S²⁻有_____个。
- ③ 已知 Li_2S 的摩尔质量是 M g/mol,阿伏伽德罗常数为 N_A 。该晶体的密度为 g/cm^3 。

- 16. (10分)研究人员对 Na₂SO₃和 Fe 粉去除废水中的硝态氮进行研究。
 - - ii. 本实验中 Na_2SO_3 在 $pH=1\sim3$ 时,脱除硝态氮 (转化为 N_2) 效果较强。
 - iii. Na₂SO₃和 Fe 粉均可以脱除硝态氮, 本实验中二者均为过量。
 - (1) Na₂SO₃ 和 Fe 粉在去除废水中硝态氮的过程中表现_____性(填"氧化"或"还原")。
 - (2) 研究 Na₂SO₃ 在 pH=1 的含氮废水中发生反应的情况,实验结果如图 1。



- ① 根据图 1,写出"实验组一"中发生反应的离子方程式____。
- ② 进行"实验组二"实验时发现,降低溶液 pH 更有利于 NO₃ 的去除,可能的原因是
- (3) 脱除 pH=1 的含氮废水中硝态氮,单独加入 Na_2SO_3 或同时加入 Na_2SO_3 与 Fe 粉的实验 结果如图 2 和图 3。

- ① 根据图 2, 前 15min 内 Na₂SO₃ 脱除 NO₃ 主要反应的离子方程式为_____
- ② 根据图 2 和图 3,20~60min 内体系中生成 NH4+主要反应的离子方程式为____。
- ③ 检验处理后的废水中存在 NH4+: 取一定量废水蒸发浓缩,____(补充操作和现象)。

17. (11 分) 钒(V) 被称为钢铁行业的"维生素"。从某钒矿石焙砂中提取钒的主要流程如下:

已知:

- i. 滤液 A 中的阳离子主要有 H⁺、VO₂⁺、 Fe³⁺、Al³⁺等;
- ii. "萃取"过程可表示为 VO²⁺+2HA (有机相) ← VOA₂ (有机相) +2H⁺。
- (1)"浸钒"时,为加快浸出速率可采取的措施有 (写出1条即可)。
- (2) "浸钒"过程中,焙砂中的 V₂O₅ 与硫酸反应的离子方程式为。
- (3)"还原"过程中,铁粉发生的反应有 $Fe+2H^+=Fe^{2^+}+H_2\uparrow$ 、 $2Fe^{3^+}+Fe=3Fe^{2^+}$ 和如下反应,补全该反应的离子方程式。

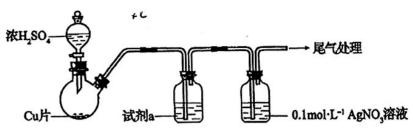
	- .					•
1	17/00++	Fe-	 \V\O2+4	ـ ا ا تم2 ⁺ ا	-	
ᆫ			 ,			

- (4)"萃取"前,若不用石灰乳先中和,萃取效果不好,原因是____。
- (5) 写出"煅烧"过程发生反应的化学方程式。
- (6) 用以下方法测量"浸钒"过程中钒的浸出率。从滤液 A 中取出 1 mL,用蒸馏水稀释至 10 mL,加入适量过硫酸铵,加热,将滤液 A 中可能存在的 VO^{2^+} 氧化为 VO_{2}^+ ,继续加热 煮沸,除去过量的过硫酸铵。冷却后加入 3 滴指示剂,用 $c \text{ mol·L}^{-1}$ 的(NH₄) $_2$ Fe(SO₄) $_2$ 标准 溶液将 VO_{2}^+ 滴定为 VO^{2^+} ,共消耗 ν_1 mL (NH₄) $_2$ Fe(SO₄) $_2$ 溶液。

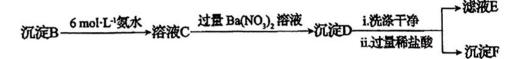
已知:所取钒矿石焙砂中钒元素的质量为ag;所得滤液A的总体积为bmL;

- 3 滴指示剂消耗 v2 mL (NH4)2Fe(SO4)2 溶液。
- ①用上述方法测得"浸钒"过程中钒的浸出率为____。
- ②若不除去过量的过硫酸铵,钒浸出率的测定结果将_____(填"偏高"、"不变"或"偏低")。

第7页 共10页


18. (12分) 化合物 P 是合成抗病毒药物普拉那韦的原料, 其合成路线如下。

$$\begin{array}{c|c} O \\ O \\ O \\ O \\ O \\ P \\ O \\ \hline \\ O \\ \\ O \\ \hline \\ O \\ \\ O \\ \hline \\ O \\ \hline \\ O \\ \hline \\ O \\ \\ O \\$$


- (1) A 中含有羧基, A→B 的化学方程式是_____
- (2) D 中含有的官能团是____。
- (3) 关于 D→E 的反应:
 - O ① 的羰基相邻碳原子上的 C-H 键极性强,易断裂,原因是_____。
 - ② 该条件下还可能生成一种副产物,与 E 互为同分异构体。该副产物的结构简式 是_____。
- (4) 下列说法正确的是____(填序号)。
 - a. F存在顺反异构体
 - b. J和 K 互为同系物
 - c. 在加热和 Cu 催化条件下, J 不能被 O2 氧化
- (5) L 分子中含有两个六元环。L 的结构简式是____。
- (6) 已知: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \longrightarrow \mathbb{R}^2 , 依据 $D \to E$ 的原理,L 和 M 反应得到了 P。 M 的结构简式是

- 19. (16分) 化学小组实验探究 SO2与 AgNO3 溶液的反应。
 - (1) 实验一: 用如下装置 (夹持、加热仪器略) 制备 SO₂₁, 将足量 SO₂通入 AgNO₃溶液中, 迅速反应,得到无色溶液 A和白色沉淀 B。

- ① 浓 H₂SO₄ 与 Cu 反应的化学方程式是。
- ② 试剂 a 是 。
- (2) 对体系中有关物质性质分析得出: 沉淀 B 可能为 Ag₂SO₃、Ag₂SO₄或二者混合物。 (资料: Ag₂SO₄微溶于水; Ag₂SO₃难溶于水)

实验二: 验证 B 的成分

- ① 写出Ag2SO3溶于氨水的离子方程式: 。
- ② 加入盐酸后沉淀 D 大部分溶解,剩余少量沉淀 F。推断 D 中主要是 BaSO₃,进而 推断 B 中含有 Ag₂SO₃。向滤液 E 中加入一种试剂,可进一步证实 B 中含有 Ag₂SO₃。所用试剂及现象是
- (3) 根据沉淀 F 的存在,推测 SO_4^{2-} 的产生有两个途径。

途径 1:实验一中, SO_2 在 $AgNO_3$ 溶液中被氧化生成 Ag_2SO_4 ,随沉淀 B 进入 D。 途径 2:实验二中, SO_3 ²一被氧化为 SO_4 ²一进入 D。

实验三: 探究 SO42-的产生途径

- ① 向溶液 A 中滴入过量盐酸,产生白色沉淀,证明溶液中含有_____; 取上层清液继续滴加 BaCl₂溶液,未出现白色沉淀,可判断 B 中不含 Ag₂SO₄。做出判断的理由:_____。
- ② 实验三的结论: _____。
- (4) 实验一中 SO₂与 AgNO₃溶液反应的离子方程式是____。
- (5) 根据物质性质分析, SO₂与 AgNO₃溶液应该可以发生氧化还原反应。将实验一所得混合物放置一段时间,有 Ag 和 SO₄²⁻生成。
- (6) 根据上述实验所得结论: ____。

第9页 共10页

北京一零一中 2024-2025 学年度高三第一次月考

化 学 2024年8月26日

I卷 选择题(共 42 分)

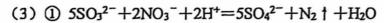
													T 1
1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	С	D	В	С	D	Α	С	D	В	В	D	В	Ď

Ⅱ卷 非选择题(共58分)

评分标准:除特殊标明外, 每空2分

15. (9分) (每空1分)

- (1) ① 球形
- ② p


- (2) (1) F>N>P
- 2 sp²
- **3** 6

- (3) ① Li⁺
- 2 4

16. (9分)

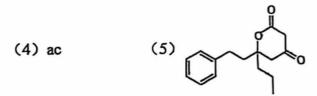
- (1) 还原
- (1分)
- (2) ① $SO_3^{2^-} + H^+ = HSO_3^-$ (1分)

 - ② c(H⁺)较大时,NO₃⁻的氧化性较强 (1分)

- ② $4Fe+NO_3^-+10H^+=NH_4^++4Fe^{2+}+3H_2O$
- ③ 加入浓 NaOH 溶液并加热,产生能使湿润的红色石蕊试纸变蓝的气体

17. (12分)

- (1) 搅拌(或加热、粉碎、提高硫酸浓度) (1分)


- (2) $V_2O_5+2H^+=2VO_2^++H_2O$
- (3) $2VO_2^+ + Fe + 4H^+ = 2VO_2^+ + Fe^{2^+} + 2H_2O_2^+$
- (4) 若不用石灰乳中和, 溶液中 $c(H^{+})$ 较大, 不利于反应 $VO^{2^{+}}+2HA$ (有机相) \longleftrightarrow VOA_{2} (有 机相)+2H⁺正向进行,对 VO²⁺萃取效果不好。
- (5) (NH₄)₂V₆O₁₆ <u>機能</u> 3V₂O₅+2NH₃↑+H₂O

- (6) ① $\frac{c(v_1-v_2)\times 51\times b\times 10^{-3}}{a}\times 100\%$
 - ② 偏高 (1分)

18. (12分)

- (2) 醛基 (1分)
- (3) ① 羰基的吸电子作用使得羰基相连的 C-H 镜 化 性增强,易断裂 (1分)

19. (16分)

- (1) ① Cu+2H₂SO₄(浓) <u>△</u>CuSO₄+SO₂↑+2H₂O ② 饱和 NaHSO₃ 溶液(1 分)
- (2) ① $Ag_2SO_3+4NH_3\cdot H_2O=2Ag(NH_3)_2^++SO_3^2^-+4H_2O$
 - ② H₂O₂溶液,产生白色沉淀
- (3) ① Ag⁺ (1分)

Ag₂SO₄溶解度大于 BaSO₄,没有 BaSO₄沉淀时,必定没有 Ag₂SO₄

- ② 途径1不产生SO42-,途径2产生SO42-
- (4) $2Ag^{+}+SO_{2}+H_{2}O=Ag_{2}SO_{3}\downarrow+2H^{+}$
- (6) 实验条件下: SO₂ 与 AgNO₃ 溶液生成 Ag₂SO₃ 的速率大于生成 Ag 和 SO₄²⁻的速率; 碱性溶液中 SO₃²⁻更易被氧化为 SO₄²⁻

