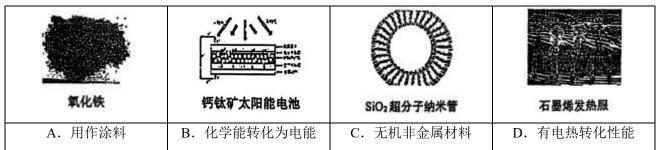
2024 北京人大附中高三(上) 开学考

化 学


命题人: 蔡元博 审题人: 毛娜

说明:本试卷 19 道题,共 100 分;考试时间 90 分钟;请在答题卡上填写个人信息,并将条形码贴在答题卡的相应位置上。

第一部分(共42分)

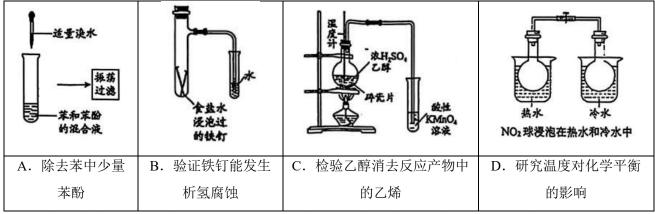
本部分共14小题,每题3分。在每题列出的4个选项中,选出最符合题目要求的一项。

1. 化学与人类社会的生产、生活有着密切联系。下列叙述中不正确的是()

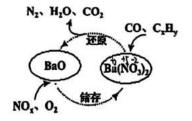
- A. 中子数为 32, 质子数为 27 的钴原子: $^{32}_{77}$ Co
- B. H_2O_2 的电子式: H^+ $\left[:\ddot{Q}:\ddot{Q}:\ddot{Q}:\right]^{2-}H^+$
- C. $\left[\operatorname{Co}\left(\operatorname{NH}_{3}\right)_{6}\right]\operatorname{Cl}_{3}$ 中 Co 的化合价是+3
- D. NH₃和NH₄Cl所含化学键类型完全相同
- 3. 镁和铝都是较活泼的金属,下列叙述正确的是()
- A. 第一电离能: $I_1(Mg) > I_1(Al)$
- B. 工业上常通过电解 $MgCl_2$ 溶液的方法制取金属 Mg
- C. 将 AlCl₃溶液蒸干可制得无水 AlCl₃
- D. 历史上曾用反应: 3Na+AlCl₃ [△] = Al+3NaCl 制铝; 现代工业用反应:

$$Mg+2RbCl$$
 ====== $MgCl_2+2Rb$ ↑制铷,所以活动性: $Mg>Rb>Na>Al$

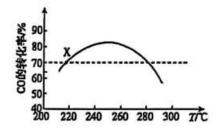
4. 根据已有知识,结合给出信息,判断以下化学用语表达式不正确的是()


信息:
$$K_{\rm sp}$$
 (FeS) = 6×10^{-18} 、 $K_{\rm sp}$ (CuS) = 6.3×10^{-36}

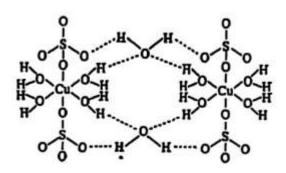
- A. H_2S 在水中<mark>的</mark>电离: $H_2S \rightleftharpoons 2H^+ + S^{2-}$
- B. 向 Na_2S 溶液中加入少量氯水: $S^{2-} + Cl_2 = S \downarrow + 2Cl^-$
- C. FeS 固体悬浊液中存在平衡: FeS(s) \rightleftharpoons Fe²⁺(aq)+S²⁻(aq)
- D. FeS与CuSO₄溶液可发生反应: FeS(s)+Cu²⁺ = CuS(s)+Fe²⁺


5. 下列图示实验能达成相应目的的是()

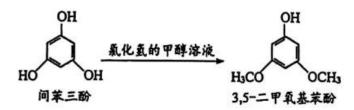
6. "褪色"是高中化学实验中一种常见且重要的现象。以下实验中的"褪色"现象与所得结论相匹配的是(


选项	实验操作	结论
A	向滴有酚酞的 $NaOH$ 溶液中通入 SO_2	SO_2 具有漂白性
В	向酸性 KMnO ₄ 液中滴入乙醇	乙醇具有还原性
С	向品红溶液中通入Cl ₂	Cl ₂ 具有漂白性
D	向 FeCl ₃ 与 KSCN 的混合溶液中加入铁粉	Fe 比 Fe ³⁺ 更易与SCN ⁻ 配位

7. 三效催化剂是最为常见的汽车尾气催化剂,其催化剂表面物质转化的关系如图所示,下列说法正确的是()

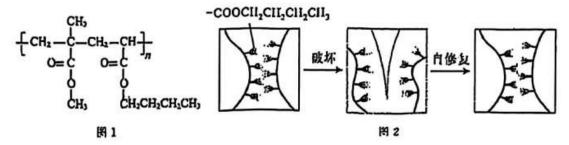

- A. 在转化过程中, 氮元素均被还原
- B. 依据图示判断催化剂不参与储存和还原过程
- C. 还原过程中,每生成0.1mol N_2 ,转移电子数为0.5mol
- D. 三效催化剂能有效实现汽车尾气中 CO 、 $\mathrm{C}_x\mathrm{H}_v$ 、 NO_x 三种成分的净化
- 8. 工业上利用 CO 和 H_2 合成二甲醚: $3CO(g)+3H_2(g) \rightleftharpoons CH_3OCH_3(g)+CO_2(g)$ ΔH 。其它条件

不变时,相同时间内CO的转化率随温度T的变化情况如图所示。下列说法不正确的是()


- A. $\Delta H < 0$
- B. 状态 X 时, $v_{\rm lift}(CO) = v_{\rm th}(CO)$
- C. 相同温度时,增大压强,可以提高CO的转化率
- D. 状态X时,选择合适催化剂,可以提高相同时间内CO的转化率
- 9. 胆矾($CuSO_4 \cdot 5H_2O$)的结构示意图如下所示。下列说法不正确的是()

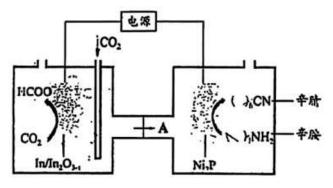
t1 | t1 | t1 | t

- A. 基态 Cu²⁺ 的价层电子轨道表示式是
- B. H_2O 中氧原子的 VSEPR 的价层电子对数是 4
- C. SO_4^{2-} 中的 O-S-O 的键角小于 H_2O 中的 H-O-H 的键角
- D. 胆矾中的 H_2O 与 Cu^{2+} 、 H_2O 与 SO_4^{2-} 的作用力分别为配位键和氢键
- 10. 间苯三酚通过甲基化反应可以合成重要的有机合成中间体 3,5-二甲氧基苯酚。

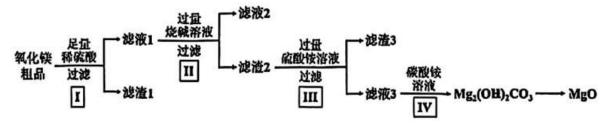

反应结束后,先分离出甲醇(操作①),再加入乙醚,将获得的有机层(含少量氯化氢)进行洗涤(操作②),然后分离提纯得到产物。有关物质的部分物理性质如下:

物质	沸点/℃	熔点/℃	溶解性
甲醇	64.7	-97.8	易溶于水
3,5-二甲氧基苯酚	172~175	33~36	易溶于甲醇、乙醚,微溶于水

下列说法正确的是()


A. 分离出甲醇的操作①是蒸馏

- B. 间苯三酚与 3, 5-二甲氧基苯酚的核磁共振氢谱分别有 2 组峰和 3 组峰
- C. 用 FeCl, 溶液可以鉴别间苯三酚是否完全转化为 3, 5-二甲氧基苯酚
- D. 洗涤有机层(操作②)时,可使用 NaOH 溶液
- 11. 一种自修复材料在外力破坏后能够复原,其结构简式(图1)和修复原理(图2)如下。


下列说法不正确的是()

- A. 该高分子可通过加聚反应合成
- B. 合成该高分子的两种单体互为同系物
- C. 使用该材料时应避免接触强酸或强碱
- D. 自修复过程中"-COOCH₂CH₂CH₂CH₃"基团之间形成了化学键
- 12. 近期,天津大学化学团队以 \mathbf{CO}_2 与辛胺为原料实现了甲酸和辛腈的高选择性合成,装置工作原理如图。下列说法正确的是()

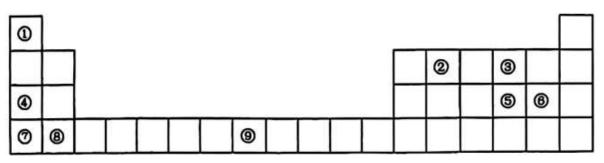
- A. Ni_2P 电极与电源负极相连
- B. 图中从左向右迁移的离子 $A \in H^+$
- C. $\ln/\ln_2 O_{3-x}$ 电极上可能会有副产物 H_2 生成
- D. 在 $\operatorname{In}/\operatorname{In}_2\operatorname{O}_{3-x}$ 电极上发生的反应为: $\operatorname{CO}_2 + \operatorname{H}_2\operatorname{O} 2\operatorname{e}^- \longrightarrow \operatorname{HCOO}^- + \operatorname{OH}^-$
- 13. 某MgO粗品中含少量 SiO_2 、 Fe_2O_3 和 Al_2O_3 等杂质,以氧化镁粗品为原料制备耐火材料——轻质氧化镁的流程如下:

以下说法中,不正确的是()

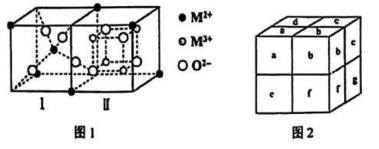
- A. 滤渣I的主要成分是SiO,
- B. 步骤II利用了Al(OH),是两性氢氧化物的特点将之分离
- C. 硫酸铵溶液中各离子浓度大小关系满足: $c(NH_4^+) > c(SO_4^{2-}) > c(H^+) > c(OH^-)$
- D. 步骤IV中发生反应的离子方程式为: $2Mg^{2+} + 2OH^- + CO_3^{2-} = Mg_2(OH)_2 CO_3$ ↓
- 14. 某学生对 SO_2 与漂粉精的反应进行实验探究:

步骤	操作	现象
I	取4g漂粉精固体,加入100mL水	部分固体溶解,溶液略有颜色
II	过滤,测漂粉精溶液的pH	pH 试纸先变蓝(约为 12),后褪色
	持续通入SO ₂ →一□□ →尼气处理	i. 液面上方出现白雾;
III		ii. 稍后,出现浑浊,溶液变为黄绿色;
	11 未粉精溶液	iii.稍后,产生大量白色沉淀,黄绿色褪去
13.7	分别用酸化的AgNO3溶液和淀粉-KI试	iv. $AgNO_3$ 溶液中产生白色沉淀
IV	纸检验III-i中出现的白雾	v. 淀粉 –KI 试纸未变蓝

已知: 漂粉精的主要成份为 $Ca(ClO)_2$, 同时含有少量 $CaCl_2$ 和 $Ca(OH)_2$ 等杂质


以下说法中正确的是()

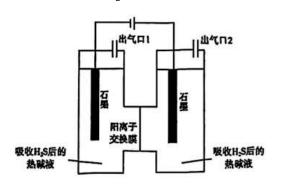
- A. 步骤II中溶液 pH = 12的原因一定是: $ClO^- + H_2O \rightleftharpoons HClO + OH^-$
- B. 步骤III中黄绿色的产生可能与溶液的酸性增强有关
- C. 步骤III中产生的白色沉淀主要成份是CaSO,
- D. 步骤IV中的实验现象证明III-i的白雾中一定含有 HCl


第二部分(共58分)

15. (12分)元素①~9是化学实验中常见的九种元素,其在周期表中的位置如下。

- (1) 元素②的基态原子的电子排布式为。
- (2) 在①~8中,原子半径最大的是 (填元素符号)
- (3)以下现象或事实能说明(5)的电负性小于(6)的是 (填字母)
- A. 两元素的最高化合价: (5)<(6)
- B. 两元素形成的简单氢化物的沸点: (5)>(6)
- C. 在5与6形成的化合物中,5显正价
- (4) ①与③可形成原子个数比为2:1的分子X。
- i. 该分子中的化学键是由①的1s 轨道与③的 轨道重叠而形成的σ键。
- ii. X比①与⑤形成的同类型分子熔沸点更高,原因是。
- (5) 元素③与④可形成原子个数比为1:1的离子型化合物 Y, Y与 CO_2 反应的化学方程式为
- (6) 元素⑨ (用M 表示)的一种氧化物Z的晶体是由图 1 所示的结构平移构成。图 1 包含I型和II型两种小立方体,图 2 是 Z的晶胞, $a \sim g$ 分别对应图 1 中的小立方体I或II。

- ii. 晶体中 \mathbf{M}^{3+} 周围距离最近且等距的 \mathbf{O}^{2-} 有 个。
- iii. 若I型和II型小立方体的边长均为anm,则Z的密度为_____g/cm³。(列出表达式,其中阿伏加德罗常数值用 N_{A} 表示,Z的摩尔质量为mg/mol)
- iv. 写出一种由 M 的单质制备 Z 的化学方程式_____。
- 16. (11 分) 天然气是一种绿色、优质能源,但其中含有的 $\mathbf{H}_2\mathbf{S}$ 会腐蚀管道设备,开采天然气后须及时除 去 $\mathbf{H}_2\mathbf{S}$ 。

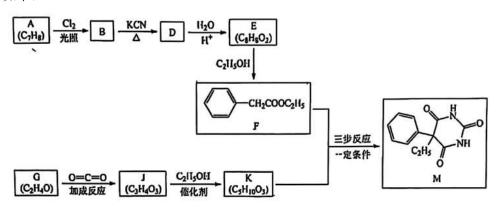

已知: i. 氢硫酸和碳酸的电离常数如下表。

	$K_{ m al}$	$K_{\mathrm{a}2}$
H ₂ S	1.3×10 ⁻⁷	7.1×10^{-15}
H ₂ CO ₃	4.4×10 ⁻⁷	4.7×10 ⁻¹¹

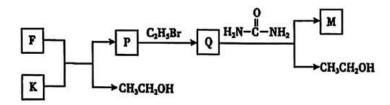
- ii. $(x-1)S+S^{2-}$ (无色) $\rightleftharpoons S_x^{2-}$ (黄色) (x=2-6)
- (1) 醇胺法脱硫:醇胺对脱除 $\mathbf{H}_2\mathbf{S}$ 选择性很高,二乙醇胺脱硫原理如下。

 $(HOCH_2CH_2)$, $NH(1) + H_2S(g) \rightleftharpoons (HOCH_2CH_2)$, $NH_2HS(1)$ $\Delta H < 0$

- ①上述反应能够发生是因为二乙醇胺分子中含有 性基团。
- ②依据平衡移动原理推测脱硫后使二乙醇胺再生的方法有 (写出2种即可)。
- (2)热碱法脱硫: 用热碱液(Na_2CO_3 溶液)吸收天然气中的 H_2S ,可将其转化为可溶性的NaHS,反应的化学方程式是
- (3) 充分吸收 H₂S 后, 热碱液可利用如下电解装置, 从中提取单质硫。



- ①电解一段时间后,阳极区溶液变黄,结合电极反应式解释原因: ____。
- ②取①中阳极区的黄色溶液,加入硫酸可得到单质硫,硫的回收率高达91.6%。推断黄色溶液中含硫微粒除 \mathbf{S}^{2-} 外,还有


(硫的回收率=生成单质硫的质量加硫酸前溶液中硫元素的总质量)

③电解一段时间后,阴极区得到的溶液可继续用于吸收 H_2S 。 该溶液中溶质一定含有_____(填化学式)。 17.(10 分)苯巴比妥(M)是一种中枢神经系统药物,具有镇静、催眠、抗惊厥作用。其一种合成路线如下:

已知: i. $RCN \xrightarrow{H_2O} RCOOH$

- ii. $R_1COOR_2 + R_3OH \xrightarrow{\text{催化剂}} R_1COOR_3 + R_2OH$
- (1) A 属于芳香烃, 其名称为。
- (2) $B \rightarrow D$ 的反应类型是。
- (3) E → F 的化学方程式是 。
- (4) G 和 J 的核磁共振氢谱都只有一组峰, J 的结构简式是
- (5) 由F和K 合成M 的过程如下图 (无机物略去):

写出结构简式 K: ; P: 。

18. (13分) 三星堆出土的金面具等金制品揭示了人类古文明对黄金的使用。

- I. 金的结构与性质
- (1) 金的价电子排布为 $5d^{10}6s^1$,它在周期表中的位置为。
- (2) 金面具的制作过程包含了淘金、冶金、铸金、锤鍱等工艺,以下金的性质中,与其金属键有关的是(填字母)
- A. 有金属光泽 B. 有较高的熔点 C. 有很好的延展性 D. 有良好的导电性
- Ⅱ. 金的冶炼
- (3) 金的化学性质很稳定,单独用浓盐酸或浓硝酸均不能将金溶解,但将浓硝酸与浓盐酸按体积比1:3 配制成王水,则可以溶解金,发生的反应如下:

$$Au + HNO_3 + 4HCl \longrightarrow H[AuCl_4] + NO \uparrow +2H_2O$$

- ①王水溶金过程中,硝酸的作用是。
- ②盐酸的作用是:提供 $C\Gamma$ 与生成的 Au^{3+} 配位,降低了 Au^{3+} 浓度,提高Au的还原性。
- ③ Ag 可被浓硝酸轻易溶解,但王水溶解 Ag 的效果却不好,原因可能是。
- ④ H[AuCl₄]可用 Zn 粉还原,完成"沉金"。1molH[AuCl₄]被 Zn 完全还原时,消耗 Zn 的物质的量是 mol。
- (4) 在碱性条件下用 NaCN 溶液也可溶金。(已知: HCN 是一种易挥发的弱酸。)

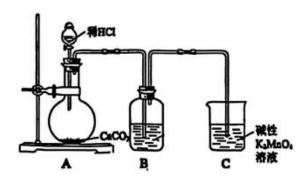
①补全 NaCN 溶液溶金反应的离子方程式:

$Au + CN^- + O_2 +$	$=$ Au $(CN)_2^- +$
---------------------	---------------------

- ② $\operatorname{Au}(\operatorname{CN})_2^-$ 中配位原子是 C ,结合电子式说明 C 可以作为配位原子的原因: _____。
- ③已知 O_2 的氧化性随溶液酸性的增强而增强。工业上常选pH=10的NaCN溶液进行溶金,不选更低pH的原因可能是 (写出一种即可)。
- 19.(12 分)锰的化合物在工业、医疗等领域有重要应用。某兴趣小组模拟制备 $\mathrm{KMnO_4}$ 及探究锰(II)盐能否被氧化为高锰(VII)酸盐。

步骤一:
$$3MnO_2 + 6KOH + KClO_3 = 3K_2MnO_4 + KCl + 3H_2O$$

步骤二: $3K_2MnO_4 + 2CO_2 = 2KMnO_4 + MnO_2 + 2K_2CO_3$



【实验操作】

步骤一:将一定比例的 MnO_2 、KOH和 $KClO_3$ 固体混合加热,得到墨绿色的固体,冷却后加水溶解得到碱性 K_2MnO_4 溶液放入烧杯C中。

步骤二:连接装置,检查气密性后装药品。打开分液漏斗活塞,当 \mathbb{C} 中溶液完全变为紫红色时,关闭活塞停止反应,分离、提纯获取 $\mathbb{K}MnO_4$ 晶体。

装置图如下:

- (1) B 中的试剂应选择。
- (2)若反应结束后,未能及时分离 $KMnO_4$ 晶体,可发现 C 中紫红色溶液变浅。该小组同学认为是碱性 K_2MnO_4 溶液中的某成分将生成的 MnO_4^- 还原,导致颜色变浅,该成分可能是_____。
- (3) 测定所得 $KMnO_4$ 的纯度: 称取 $mgKMnO_4$ 晶体,溶于水配成 500mL 溶液,取 25.00mL 于锥形瓶中,加入稀硫酸酸化后,其能与 $VmLcmol/LH_2C_2O_4$ 恰好完全反应。则所得 $KMnO_4$ 的质量分数为

_____(列式表达, $M(KMnO_4)=158g/mol$)。

已知: i. $KMnO_4$ 晶体中的其他杂质不与 $H_2C_2O_4$ 反应

ii. 酸性条件下 $KMnO_4$ 与 $H_2C_2O_4$ 发生如下反应:

 $2MnO_4^- + 5H_2C_2O_4 + 6H^+ = 2Mn^{2+} + 10CO_2 \uparrow +8H_2O$

II. 该小组继续探究 Mn^{2+} 能否氧化为 MnO_4^- , 进行了下列实验:

装置图	试剂 X	实验现象
Ω	① 0.5mL0.1mol·L ⁻¹ NaOH 溶液	生成浅棕色沉淀,一段时间后变为棕 黑色
XMX	② 0.5mL0.1mol·L ⁻¹ NaOH 和15%H ₂ O ₂ 混合 液	立即生成棕黑色沉淀
	③ 0.5mL0.1mol·L ⁻¹ HNO ₃ 溶液	无明显现象
5mL 0.1mol·L·1 MnSO ₄	④ 0.5mL0.1mol·L ⁻¹ HNO ₃ 溶液和少量PbO ₂	滴加 HNO_3 无明显现象,加入 PbO_2 立即变为紫红色,稍后紫红色很快消失,生成棕黑色沉淀

已知: i. $Mn(OH)_2$ 为白色难溶固体; MnO_2 为棕黑色难溶固体;

- ii. $KMnO_4$ 在酸性环境下缓慢分解产生 MnO_2 。
- (4) 实验①中生成棕黑色沉淀可能的原因____。
- (5) 实验②中迅速生成棕黑色沉淀的离子方程式。
- (6) 对比实验③和④,实验③的作用____。

探究结果:酸性条件下,某些强氧化剂可以将 Mn^{2+} 氧化为 MnO_4^- 。

