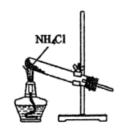
2023 北京一零一中高二(上)统练一 化 学

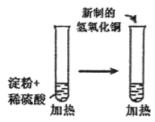
2023年9月20日

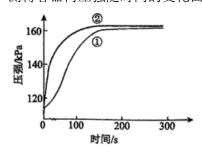
友情提示:

本试卷分为 Ⅰ 卷、Ⅱ 卷两部分, 共 16 道小题, 共 8 页, 满分 100 分: 答题时间为 50 分钟: 请将答案 写在答题纸上。

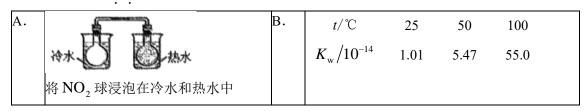
I 卷 选择题 (共 56 分)

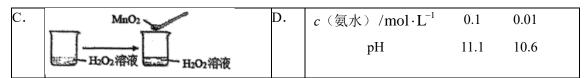

(共14道小题,每小题只有一个选项符合题意,每小题4分。)


- 1. 下列物质的应用与氧化还原反应无关的是()。
- A. 呼吸面具中用过氧化钠作供氧剂
- B. 面团中加入小苏打, 蒸出的馒头疏松多孔
- C. 葡萄糖在人体内代谢, 可为生命活动提供能量
- D. 维生素 C 能促进补铁剂(有效成分 $FeSO_4$)的吸收
- 2. 用下列仪器或装置进行相应实验,能达到实验目的的是()。

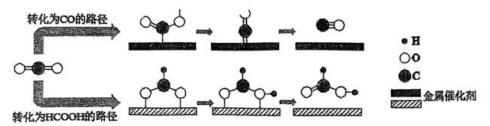

A. 除去 SO_2 中的少 B. 配制一定物质的 量 HCl

量浓度的硫酸溶液


C. 制取氨气


D. 检验淀粉水解生成了葡 萄糖

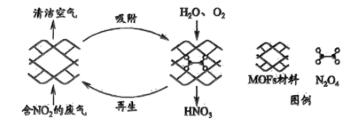
3. 在两个密闭的锥形瓶中,0.05g 形状相同的镁条(过量)分别与2mL $2mol \cdot L^{-1}$ 的盐酸和醋酸反应, 测得容器内压强随时间的变化曲线如下图。下列说法正确的是()。



- A. ①代表的是盐酸与镁条反应时容器内压强随时间的变化曲线
- B. 任意相同时间段内, 盐酸与 Mg 反应的化学反应速率均快于醋酸与 Mg 反应的化学反应速率
- C. 反应中醋酸的电离被促进,两种溶液最终产生的氢气总量基本相等
- D. $1 \text{mol} \cdot L^{-1}$ NaOH 溶液完全中和上述两种酸溶液,盐酸消耗 NaOH 溶液的体积更大
- 4. 下列实验事实不能用平衡移动原理解释的是()。

5. CO_2 的转化一直是世界范围内的研究热点。利用两种金属催化剂,在水溶液体系中将 CO_2 分别转化为CO 和 HCOOH 的反应过程示意图如下:

下列说法正确的是()。


- A. 在转化为 CO 的路径中,只涉及碳氧键的断裂和氧氢键的形成
- B. 在转化为两种产物的过程中碳、氧原子的利用率均为 100%
- C. 在转化为HCOOH的路径中, CO,被氧化为HCOOH
- D. 上述反应过程说明催化剂具有选择性
- 6. 一定温度下,在 2 个容积均为1L 的恒容密闭容器中,加入一定量的反应物,发生反应:

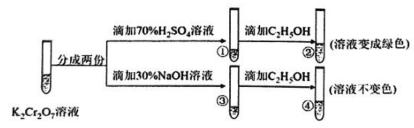
$$2NO(g)+2CO(g) \rightleftharpoons N_2(g)+2CO_2(g)$$
 $\Delta H < 0$,相关数据见下表。

容器编号	温度/℃	起始物质	的量/mol	平衡物质的量/mol		
台 前 洲 勺	価/叉/ С	NO(g)	CO(g)	$CO_2(g)$		
I	T_1	0.2	0.2	0.1		
II	T_2	0.2	0.2	0.12		

下列说法不正确的是()。

- A. $T_1 > T_2$
- B. I 中反应达到平衡时, CO 的转化率为 50%
- C. 达到平衡所需要的时间: II > I
- D. 对于 I ,平衡后向容器中再充入0.2mol CO 和0.2mol CO₂ ,平衡正向移动
- 7. 某 MOFs 多孔材料孔径大小和形状恰好将 N_2O_4 "固定",能高选择性吸 NO_2 。 废气中的 NO_2 被吸附后,经处理能全部转化为 HNO_3 。 原理示意图如下。

已知: $2NO_2(g) \rightleftharpoons N_2O_4(g)$ $\Delta H < 0$ 。下列说法不正确的是()。


- A. 温度升高时不利于 NO₂ 吸附
- B. 多孔材料"固定" N_2O_4 ,促进 $2NO_2 \rightleftharpoons N_2O_4$ 平衡正向移动
- C. 转化为 HNO_3 的反应是: $2N_2O_4 + O_2 + 2H_2O \Longrightarrow 4HNO_3$

- D. 每获得 0.4mol HNO_3 时,转移电子的数目为 6.02×10^{22}
- 8. 向密闭容器中充入1mol HI,发生反应: $2HI(g) \rightleftharpoons H_2(g) + I_2(g) \Delta H > 0$,达到平衡状态。该反应经过以下两步基元反应完成:
- i. $2HI \longrightarrow H_2 + 2I \cdot \Delta H_1$
- ii. $2I \cdot \longrightarrow I_2 \Delta H_2$

下列分析不正确的是()。

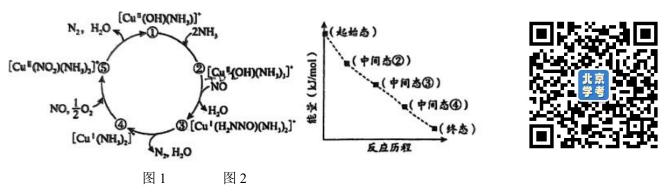
- A. $\Delta H_1 > 0$, $\Delta H_2 < 0$
- B. $n(HI) + 2n(I_2) = 1 \text{mol}$
- C. 恒温时,缩小体积,气体颜色变深,是平衡正向移动导致的
- D. 恒容时,升高温度,气体颜色加深,同时电子发生了转移
- 9. $K_2Cr_2O_7$ 溶液中存在平衡: $Cr_2O_7^{2-}$ (橙色) $+H_2O \Longrightarrow 2CrO_4^{2-}$ (黄色) $+2H^+$ 。用 $K_2Cr_2O_7$ 溶液进行下列实验:

结合实验,下列说法不正确的是()。

- A. ①中溶液橙色加深, ③中溶液变黄
- B. ②中 Cr₂O₇²⁻ 被 C₂H₅OH 还原
- C. 对比②和④可知 $K_2Cr_2O_7$ 酸性溶液氧化性强
- D. 若向④中加入 70% H₂SO₄ 溶液至过量,溶液变为橙色
- 10. 在 T^ℂ, HCl 气体通过铁管时,发生腐蚀反应 (X):

反应 X:
$$Fe(s) + 2HCl(g) \Longrightarrow FeCl_2(s) + H_2(g)$$
 $\Delta H(K = 0.33)$

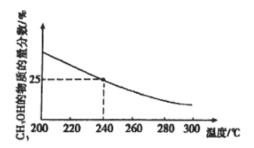
下列分析不正确的是()。


- A. 降低反应温度, 可减缓反应 X 的速率
- B. 在HCl 气体中加入一定量 H_2 能起到防护铁管的作用
- C. 反应 X 的 ΔH 可通过如下反应获得:

$$Fe(s)+Cl_2(g) \rightleftharpoons FeCl_2(s) \Delta H_1$$

$$H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g) \Delta H_2$$

- D. TC时,若气体混合物中 $c(HCl) = c(H_2) = 0.5 \text{mol} \cdot L^{-1}$,铁管被腐蚀
- 11. 某种含二价铜微粒 $\left[\text{Cu}^{\Pi} \left(\text{OH} \right) \left(\text{NH}_{3} \right) \right]^{+}$ 的催化剂可用于汽车尾气脱硝,催化机理如图 1,反应过程中不同态物质体系所含的能量如图 2。下列说法不正确的是()。



- A. 总反应焓变 $\Delta H < 0$
- B. 由状态②到状③发生的是氧化还原反应
- C. 状态③到状态④的变化过程中有 O-H 键的形成
- D. 该脱硝过程的总反应方程式为 $4NH_3+2NO+2O_2 == 6H_2O+3N_2$
- 12. 不同温度下,将1mol CO,和3mol H,充入体积为1L的恒容密闭容器中发生反应:

$$CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g) \Delta H$$

平衡时 CH₃OH 的物质的量分数随温度变化如图所示。下列说法不正确的是()。

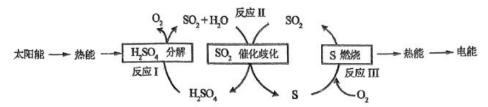
- A. 该反应的 $\Delta H < 0$
- B. 240℃时,该反应的化学平衡常数 $K = \frac{2}{3}$
- C. 240℃时,若充入 2mol CO_2 和 6mol H_2 ,平衡时 CH_3 OH 的物质的量分数大于 25%
- D. 240℃时,若起始时充入 0.5mol CO_2 、 2mol H_2 、 1mol CH_3OH 、 1mol H_2O ,反应向正反应方向进行
- 13. 电离常数是研究电解质在水溶液中的行为的重要工具。现有 HX、 H_2Y 和 H_2Z 三种酸,各酸及其盐之间不发生氧化还原反应,它们的电离常数如下表所示。

酸	电离常数(25℃)					
HX	$K_{\rm a} = 10^{-9.2}$					
H_2Y	$K_{\rm a1} = 10^{-6.4}$ $K_{\rm a2} = 10^{-10.3}$					
H_2Z	$K_{\rm a1} = 10^{-1.9}$ $K_{\rm a2} = 10^{-7.2}$					

下列说法正确的是()。

- A. 三种酸的强弱关系: $H_2Z < H_2Y < HX$
- B. H_2Z 电离的方程式为: $H_2Z \rightleftharpoons 2H^+ + Z^{2-}$
- C. Na₂Y 溶液与过量 HX 反应的离子方程式: $HX + Y^{2-} \Longrightarrow HY^{-} + X^{-}$

- D. 25℃时,浓度均为0.1mol·L⁻¹的H₂Y和H₂Z溶液的pH: H₂Y < H₂Z
- 14. 某小组同学欲通过实验探究影响金属与酸反应速率的因素,进行下列实验。

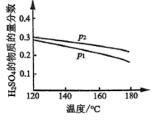

实验装置	序号	实验操作	实验现象				
D -气球	实验 1	片验金属钠,迅速塞 上胶塞	钠浮在液面上并来回移动,表面出现有白色固体; 白色固体逐渐沉到烧杯底部,液体不沸腾; 气球迅速鼓起, 15s 时测量气球直径约为3cm				
25 mL 35% 次盘酸 (足量)	实验2表	表面积基本相同的镁	镁条开始时下沉,很快上浮至液面,片刻后液体呈沸腾状,同时产生大量白雾;气球迅速鼓起,15s时测量气球直径约为5cm				

下列说法不正确的是()。

- A. 实验 1 获得的白色小颗粒可用焰色反应检验其中的 Na 元素
- B. 对比实验 1 与实验 2, 能说明同温下 NaCl 的溶解度比 MgCl, 的小
- C. 对比实验 1 与实验 2, 不能说明钠比镁的金属活动性强
- D. 金属钠、镁与盐酸反应的速率与生成物状态等因素有关

Ⅱ卷 非选择题(共44分)

15. (共23分)近年来,研究人员提出利用含硫物质热化学循环实现太阳能的转化与存储。过程如下:



(1) 反应 I: $2H_2SO_4(1) = 2SO_2(g) + 2H_2O(g) + O_2(g)$ $\Delta H_1 = +551kJ \cdot mol^{-1}$

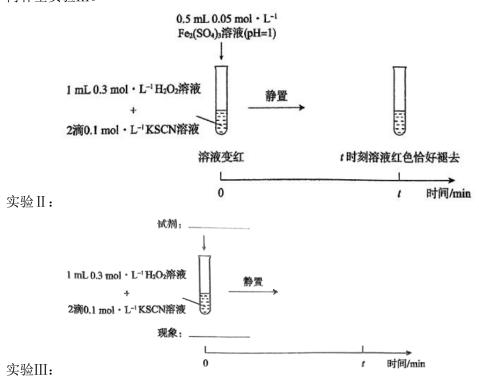
反应III:
$$S(s)+O_2(g)$$
 == $SO_2(g)$ $\Delta H_3 = -297kJ \cdot mol^{-1}$

反应Ⅱ的热化学方程式:

(2)对反应 II ,在某一投料比时,两种压强下, $\mathbf{H}_2\mathbf{SO}_4$ 在平衡体系中物质的量分数随温度的变化关系如图所示。

- p_2 p_1 (填 ">" 或 "<"),得出该结论的理由是 。
- (3) Γ 可以作为水溶液中SO, 歧化反应的催化剂,可能的催化过程如下。将 ii 补充完整。
- i. $SO_2 + 4I^- + 4H^+ == S \downarrow +2I_2 + 2H_2O$
- ii. $I_2 + 2H_2O + = = + +2I^-$
- (4)探究 i 、ii 反应速率与 SO_2 歧化反应速率的关系,实验如下:分别将18mL SO_2 饱和溶液加入到 2mL 下列试剂中,密闭放置观察现象。(已知: I_2 易溶解在 KI 溶液中)

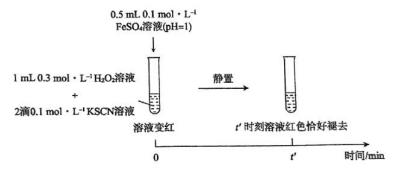
序号	A	В	С	D		
试剂组成	0.4mol⋅L ⁻¹ KI	amol·L ⁻¹ KI 0.2mol·L ⁻¹ H ₂ SO ₄	0.2mol.1 ⁻¹ H SO	$\begin{array}{c} 0.2 \text{mol} \cdot \text{L}^{-1} \text{ KI} \\ 0.0002 \text{mol} \text{ I}_2 \end{array}$		
实验现象	溶液变黄,一段时间后出现浑浊	溶液变黄, 出现浑浊 较 A 快	无明显现象	溶液由棕褐色很快褪 色,变成黄色,出现 浑浊较 A 快		


- ①B是A的对比实验,则a =____。
- ②比较 A、B、C,可得出的结论是。
- ③实验表明, SO, 的歧化反应速率 D>A, 结合 i 、ii 反应速率解释原因: _____。
- 16. (共 21 分)某实验小组在验证 H_2O_2 氧化 Fe^{2+} 时发现异常现象,并对其进行深入探究。实验 I :

装置与操作	现象
逐滴滴加 0.5 mL 0.3 mol·L $^{-1}$ H $_2$ O $_2$ 溶液	
1mL 0.1 mol·L ⁻¹ FeSO ₄ 溶液 (pH = 1) 2 滴 0.1 mol·L ⁻¹ KSCN 溶液	溶液立即变红,继续滴加 $\mathbf{H}_2\mathbf{O}_2$ 溶液,红色变浅并逐渐褪去

- (1) 实验 I 中溶液变红是因为 Fe^{3+} 与 SCN^- 发生了反应,其离子方程式是
- (2)探究实验 I 中红色褪去的原因: 取反应后溶液,_______(填实验操作和现象),证明溶液中有 Fe^{3+} ,而几乎无 SCN^- 。
- (3)研究发现,酸性溶液中 $\mathbf{H}_2\mathbf{O}_2$ 能氧化 \mathbf{SCN}^- ,但反应很慢且无明显现象,而实验 1 中褪色相对较快,由此推测 \mathbf{Fe}^{3+} 能加快 $\mathbf{H}_2\mathbf{O}_2$ 与 \mathbf{SCN}^- 的反应。通过实验 \mathbf{II} 和 \mathbf{III} 得到了证实。参照实验 \mathbf{II} 的图例,在虚线框内补全实验 \mathbf{III} 。

第6页/共8页


(4) 查阅资料: Fe^{3+} 加快 H_2O_2 与 SCN^- 反应的主要机理如下:

i.
$$Fe^{3+} + H_2O_2 = Fe^{2+} + HO_2 \cdot + H^+$$

ii .
$$Fe^{2+} + H_2O_2 = Fe^{3+} + \cdot OH + OH^-$$

iii. • OH(羟基自由基)具有强氧化性,能直接氧化SCN-。

为探究 Fe^{2+} 对 $\operatorname{H}_2\operatorname{O}_2$ 与 SCN^- 反应速率的影响,设计实验如下:

实验Ⅳ:

- ①t' < t。对比实验IV和II得出结论:在本实验条件下,_____。
- ②结合资料和(1)~(4)的研究过程,从反应速率和化学平衡的角度解释实验 I 中溶液先变红后褪色的原因: _____。
- ③实验 $I \sim IV$ 中均有 O_2 生成,小组同学推测可能是 HO_2 · 与溶液中其他微粒相互作用生成的,这些微粒有

_____°

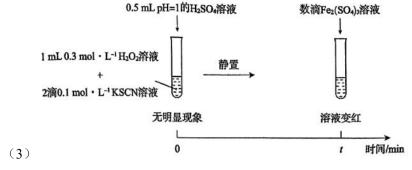
参考答案

I卷选择题(共56分)

1	2	3	4	5	6	7	8	9	10	11	12	13	14
В	A	C	C	D	D	D	C	D	D	D	В	C	В

Ⅱ卷 非选择题(共44分)

评分标准,除特殊标明外,每空4分


15. (共23分)

(1)
$$3SO_2(g) + 2H_2O(g) = 2H_2SO_4(1) + S(s) \Delta H_2 = -254kJ \cdot mol^{-1}$$

(2) > (2分)

反应 II 是气体物质的量减小的反应,温度一定时,增大压强使反应正向移动, H_2SO_4 的物质的量增大,体系总物质的量减小, H_2SO_4 的物质的量分数增大

- (3) SO_2 SO_4^{2-} $4H^+$ (3分)
- (4) ①0.4 (2分)
- ② Γ 是 SO,歧化反应的催化剂, H^+ 单独存在时不具有催化作用,但 H^+ 可以加快歧化反应速率
- ③反应ii比i快; D中由反应ii产生的H⁺使反应i加快
- 16. (共21分)
- (1) $Fe^{3+} + 3SCN^- \rightleftharpoons Fe(SCN)_3$ (3 分)
- (2) 滴加 KSCN 溶液,溶液变红(3分)

- (4) ① Fe^{2+} 也能加速 H,O, 与 SCN^- 的反应,且效果比 Fe^{3+} 更好
- ②刚滴入 H_2O_2 时,ii 反应速率快,生成的 Fe^{3+} 迅速与 SCN^- 结合,溶液立即变红;

继续滴加 $\mathbf{H}_2\mathbf{O}_2$, $c(\cdot\mathbf{OH})$ 升高,加快 • OH氧化 \mathbf{SCN}^- ,使得 $c(\mathbf{SCN}^-)$ 降低,

Fe³⁺ +3SCN⁻ ⇌ Fe(SCN)₃ 平衡逆向移动,红色褪去

③ • OH、 H_2O_2 、 Fe^{3+} (3分)