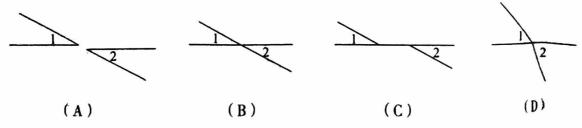


房山区 2023-2024 学年度第二学期学业水平调研(二)

七年级数学

本试卷共 8 页, 满分 100 分, 考试时长 120 分钟。考生务必将答案填涂或书写在答 题卡上,在试卷上作答无效。考试结束后,将试卷和答题卡一并交回。


- 一、选择题(本题共20分,每小题2分) 第 1-10 题均有四个选项。符合题意的选项只有一个.
- 1. 草履虫的身体很小,呈圆筒形,全身由一个细胞组成,体长只有80~300微米,其中 80 徽米 = 0.000 08 米. 把 0.000 08 用科学记数法表示为
 - (A) 0.8×10^{-4} (B) 0.8×10^{-5}
- $(C) 8 \times 10^{-4}$
- (D) 8x10⁻⁵

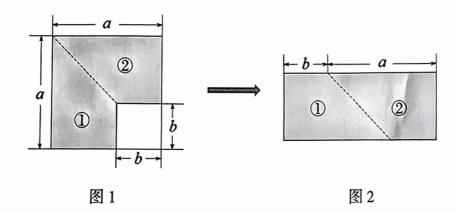
- 2. 下列运算正确的是
 - $(A) a^2 + a^3 = a^5$

(B) $(a^2)^3 = a^5$

 $(C) a^2 \cdot a^3 = a^5$

- (D) $6a^6 \div 3a^3 = 2a^2$
- 3. 下面图中∠1与∠2是对顶角的为

- 4. 如图、直线 AB , CD 被 EF 所截,下列条件不能判断 AB//CD 的是
 - $(A) \angle 1 = \angle 4$
 - (B) $\angle 3 = \angle 4$
 - (C) $\angle 2 + \angle 4 = 180^{\circ}$
 - (D) $\angle 1 + \angle 2 = 180^{\circ}$


- 5. 下列等式中, 从左到右的变形是因式分解的是
 - $(A) x(x+1) = x^2 + x$

(B) $x^2 + 2x + 1 = (x+1)^2$

(C) $x^2 + x + 1 = x(x+1) + 1$

(D) $x^2 + 1 = (x+1)^2$

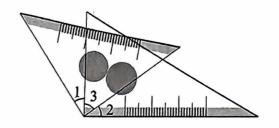
- 6. 下列调查中、适合采用全面调查(普查)方法的是
 - (A) 选出某校短跑最快的学生参加全市比赛
 - (B) 调查一批手机电池的使用寿命
 - (C) 调查某品牌汽车的抗撞击情况
 - (D) 了解某市中学生平均一周的体育锻炼时间
- 7. 有6个小正方体,它们的大小和颜色都相同,其中有5个小正方体的质量相等,有1个小正方体略重一点.可以利用天平进行实验操作探究,如果用最少的操作次数一定能找出这个质量略重的小正方体,那么最少的操作次数是
 - (A)1次
- (B)2次
- (C)3次
- (D)4次
- 8. 将边长为 a 的正方形的右下角剪掉一个边长为 b 的正方形(如图 1),将剩下部分按照 虚线分割成①和②两部分,再将①和②两部分拼成一个长方形(如图 2),由图 1 到图 2 的操作,能够验证下列等式中从左到右的变形的是

- (A) $a^2 2ab + b^2 = (a b)^2$
- (B) $(a-b)^2 = a^2 2ab + b^2$
- (C) $a^2 b^2 = (a+b)(a-b)$
- (D) $(a+b)(a-b) = a^2 b^2$

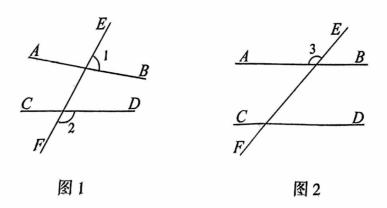
- 9. 下列说法中, 正确的是
 - (A)一组数据中最大的数据增大时,这组数据的平均数也随之增大
 - (B)-组数据中最大的数据增大时,这组数据的众数也随之增大
 - (C)一组数据中最大的数据增大时,这组数据的中位数也随之增大
 - (D)一组数据的中位数一定是这组数据中的某一个数据

- 10. 甲、乙、丙三人做写数字的游戏,三个人写的数字要同时满足以下四个条件:
 - ①乙写的数字的一半大于甲写的数字;
 - ②丙写的数字不大于甲写的数字;
 - ③丙写的数字的 3 倍大于乙写的数字;
 - ④甲、乙、丙三人写的数字均为正整数.

则三人所写数字之和的最小值为


1		1	
(А	1	4
1	$\boldsymbol{\Lambda}$,	-

(B) 7


1	0	`	0
l	U	,	>

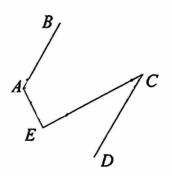
(D) 13

- 二、填空题(本题共16分,每小题2分)
- 11、若 $\angle A = 40^{\circ}$ 、那么 $\angle A$ 的余角是______。
- 12. 因式分解: $6a^2b-3ab^2 =$ ______.
- 13. 如图,将一副三角板的直角顶点重叠在一起, $\angle 1 + \angle 3 = 90^{\circ}$, $\angle 2 + \angle 3 = 90^{\circ}$,那么 $\angle 1 = \angle 2$,此结论得出的依据是______.

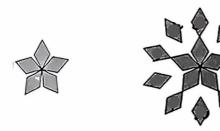
14. 定义:如图 1,直线 AB, CD被 EF所截,图中∠1与∠2位于截线 EF同侧,被截线 AB, CD的外部,我们把具有图中∠1与∠2位置关系的角称为"同旁外角".如图 2,当AB//CD时,∠3=130°,则∠3的"同旁外角"的大小为_____。

七年级数学第3页(共8页)

l5.	用一组 a ,	b, c 的值说明命题	"如果 $a < b$.	那么ac < bc"	是假命题,	这组值可
	以是a=	, b =	c =			

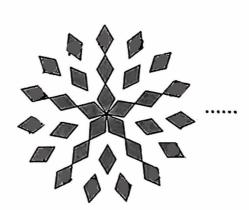


16. 为传承发展中国优秀语言文化,厚植青少年家国情怀,某校开展了"诵读中国"经典 诵读大赛. 校学生会随机对该校 20 名同学一周内诵读中华经典的时间进行了调查,统 计如下:


诵读时间 / 分钟	3,5	40	а	50
人数 / 人	4	6	7	3

若 20 名同学诵读时间的众数为 45,则 a 为_____,中位数为_____

17. 如图, AB//CD, ∠BAE = 123°, ∠DCE = 32°, 则∠AEC 的大小为______°



18. 如图所示是一组有规律的图案,每个图案都由若干个" "组成,第1个图案由5个" "组成,第2个图案由15个" "组成,第3个图案由30个" "组成,则第4个图案由_____个" "组成,第n个图案中" "的个数为_____(用 含 n 的代数式表示).

图案1

图案 2

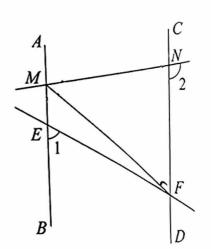
图案3

三、解答题(本题共64分,第19,20题,每题8分;第21,24题,每题6分;第22,显25题,每题5分;第23题4分;第26,27题,每题7分;第28题8分)解答应言写出文字说明、演算步骤或证明过程.

- 19. 计算: $(1) 3^{-2} + (-1)^{2024} (\pi 3)^{0}$; $(2) (x-1)^{2} + 2(x+1)$.
- 20、因式分解: (1) ax^2-a ; (2) $3x^2-12x+12$.
- 21. 解不等式组: $\begin{cases} x-4 > -3, \\ \frac{5x+1}{3} 3 \le x, \end{cases}$ 并写出它的所有整数解.
- 22、解方程组: $\begin{cases} x+2y=7, \\ 3x+4y=17. \end{cases}$
- 23. 已知a+b=2, 求代数式 a^2-b^2+4b 的值.
- 24、已知:如图,直线 AB, CD 被 EF, MN 所截, MF 平分 ∠ EMN, ∠1=60°, ∠2=96°, ∠EFD=120°, 求 ∠ MFN 的大小.

补充完成下列推理过程:

$$\therefore \angle 1 + \angle EFD = 60^{\circ} + 120^{\circ} = 180^{\circ}$$
,

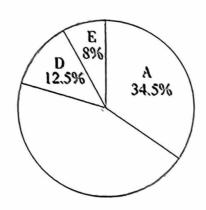

$$\therefore \angle 2 = \angle \underline{\hspace{1cm}} (\underline{\hspace{1cm}}).$$

∵MF 平分∠EMN (已知),

$$\therefore \angle EMF = \frac{1}{2} \angle EMN = 48^{\circ}$$
 (角平分线定义).

": AB//CD (已证),

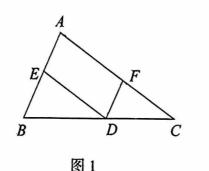
$$\therefore \angle MFN = \angle \underline{\hspace{1cm}} = 48^{\circ} (\underline{\hspace{1cm}}).$$

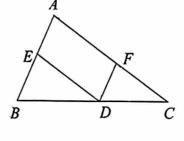


25、在技术创新和消费升级的双重作用下、粉的网购权式情然而至。直播电商购物、短规 额电商、社交电商、社区团购等新模式走进大众视野、与传统购物网站形成互补、为 了解某市市已选择直播电商购物的主要原因、统计部门在全市范围内开展随机调查。 参与调查人员需从 A、B、C、D、E 五个选项中任选一项(必选且只选一项)。

a. 参与调查人员选择直播电商购物的主要原因的统计表如下:

选项	主要原因	人数7人
A	优惠力度大、性价比高	1 380
В	节约了货比三家的挑选时间和犄力	
С	商品介绍淯晰明了、可以实时互动	1 000
D	购买界面简洁易懂、下单十分方便	m
Е	被带货主播人格魅力吸引	320


b. 参与调查人员选择直播电商购物的主要原因的扇形统计图如下:



- (1)本次调查中,随机调查了_____名市民;
- (2) 统计表中、m=____;
- (3)补全扇形统计图(标注选项 "B, C"及相应百分比);

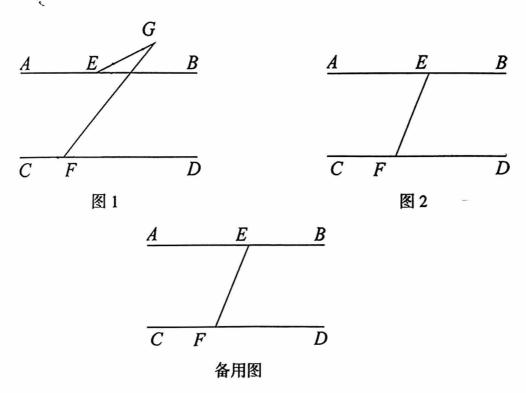
- 26. 已知:如图 1,点 D, E, F分别是线段 BC, AB, AC上的点, DE//AC, DF//AB.
 - (1) 猪想 ∠EDF 与 ∠BAC 的数量关系, 并证明.
 - (2) 用画图工具在备用图中作 $\angle BAC$ 的平分线 AM 交 BC 于点 M ,过点 A作 $AN \perp AM$ 交 DF 的延长线于点 N .
 - ①补全备用图;
 - ②若 ∠ANF = 50°, 求 ∠EDF 的大小.

备用图

27. 某校科学小组用弹簧等器材,进行了测量物体质量的实验探索.

实验一: 如图, 在弹簧下方悬挂钩码, 发现弹簧会伸长, 记录实验数据如下表:

钩码质量(单位:克)	0	200	400	600	800	1 000
弹簧长度(单位: 厘米)	10	11	12	13	14	15


例如: 当弹簧下方所挂钩码的质量为 200 克时, 弹簧长度为 11 厘米.

实验二,在弹簧下方悬挂不同的实验物块,记录实验数据如下表:

次数	A 物块(单位: 个)	B 物块(单位: 个)	弹簧长度(单位:厘米)
第一次	4	7	12
第二次	8	9	13

- (1)已知每个同类型物块的质量都相同,求出每个 A 物块和每个 B 物块的质量分别 是多少克:
- (2)该弹簧的长度伸长到 15 厘米时就不能继续伸长,实验将不能继续. 在某次实验中,弹簧下方悬挂 A 物块和 B 物块共计 30 个时,符合实验要求,其中 A 物块不 多于22个,那么有多少个 B 物块? (求出所有情况).
- 8. 在平面内,对于 $\angle P$ 和 $\angle Q$,给出如下定义:若存在一个常数t(t>0),使得 $\angle P+t\angle Q=180^\circ$,则称 $\angle Q$ 是 $\angle P$ 的"t 系数补角"。例如, $\angle P=80^\circ$, $\angle Q=20^\circ$,有 $\angle P+5\angle Q=180^\circ$,则 $\angle Q$ 是 $\angle P$ 的"t 系数补角"。
 - (1) 若∠P=90°, 在∠1=60°, ∠2=45°, ∠3=30°中, ∠P的"3系数补角"是_____;
 - (2) 在平面内、AB//CD、点 E 为直线 AB 上一点、点 F 为直线 CD 上一点.
 - ①如图 1,点 G 为平面内一点,连接 GE , GF , $\angle DFG = 50^{\circ}$, 若 $\angle BEG$ 是 $\angle EGF$ 的 "6 系数补角",求 $\angle BEG$ 的大小.
 - ②如图 2, 连接 EF. 若 H 为平面内一动点(点 H 不在直线 AB, CD, EF 上), $\angle EFH$ 与 $\angle FEH$ 两个角的平分线交于点 M. 若 $\angle BEH$ = α , $\angle DFH$ = β , $\angle N$ 是 $\angle EMF$ 的 "2 系数补角",直接写出 $\angle N$ 的大小的所有情况(用含 α 和 β 的代数式表示),并写出其中一种情况的求解过程.

七年级数学第8页(共8页)

房山区 2023——2024 学年度第二学期学业水平调研(二)参考答案

七年级数学学科

一、选择题(本题共10道小题,每小题2分,共20分)

题号	1	2	3	4	5	6	7	8	9	10
答案	D	C	В	D	В	A	В	С	A	C

二、填空题(本题共8道小题,每小题2分,共16分)

50; 11.

- 3ab(2a-b); 12.
- 同角的余角相等; 13.
- 14. 50:
- a=1, b=2, c=-1 (只需 a < b 且 $c \le 0$ 即可); 16. 45, 42.5;

17. 89;

- 18. 50, $\frac{5n^2+5n}{2}$ $\left[\frac{5(n^2+n)}{2} \stackrel{\text{d}}{\boxtimes} \frac{5n(n+1)}{2}\right]$
- 三、解答题(本题共64分,第19,20题,每题8分;第21,24题,每题6分;第22,25题,每题5分; 第23题4分;第26,27题,每题7分;第28题8分)
- 19. 解: (1) 原式= $\frac{1}{9}$ +1-1
- $=\frac{1}{0}$
- ······ 4 分
- - $=x^2+3$
- **20.** 解: (1) 原式 = $a(x^2-1)$
- = a(x+1)(x-1)

 $=3(x-2)^2$

- ······· 4 分
- (2) 原式= $3(x^2-4x+4)$
- 21. 解:解不等式①得 x > 1.

解不等式②得 $x \le 4$.

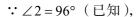
22.
$$\begin{cases} x + 2y = 7, & \text{(1)} \\ 3x + 4y = 17. & \text{(2)} \end{cases}$$

解法 1:

/41	, = •	
解:	由①得 $x = 7 - 2y$ ③	·····································
	把③代入②得 $3(7-2y)+4y=17$	
	<i>y</i> = 2	3分
	把 $y=2$ 代入③得 $x=3$	4分
	∴原方程组的解是 $\begin{cases} x=3\\ y=2 \end{cases}$	5分
解法	2:	
解:	把①×3 得 $3x + 6y = 21$ ③	1分
	③-②得 2 <i>y</i> = 4	
	y = 2	3分
	把 $y = 2$ 代入①得 $x + 4 = 7$	
	<i>x</i> = 3	4分
	∴原方程组的解是 $\begin{cases} x=3\\ y=2 \end{cases}$	
23.	解法 1:	
解:	原式= $(a+b)(a-b)+4b$	·····································
	$\therefore a+b=2$	
	∴原式=2(a-b)+4b	2分
	=2a-2b+4b	
	=2a+2b	
	=2(a+b)	
	$=2\times2=4$	4分
解法		
	$\therefore a+b=2$	
	=2-b	·····································
	=2-b	
	原式= $(2-b)^2-b^2+4b$	2分
	$=4-4b+b^2-b^2+4b$	3分
	= 4	4分

解法 3:

解: 原式=
$$a^2-b^2+4b-4+4$$

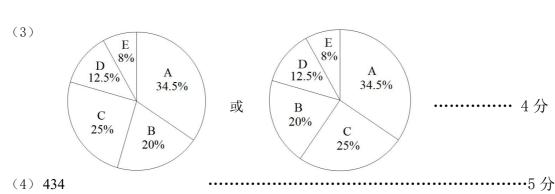

$$=a^2-(b^2-4b+4)+4$$

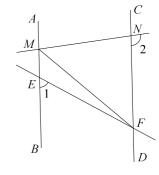
$$a+b=2$$

$$\therefore b-2=-a \qquad \qquad 2 \ \text{f}$$

$$=a^2-a^2+4$$

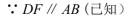
$$\therefore \angle 1 + \angle EFD = 60^{\circ} + 120^{\circ} = 180^{\circ},$$

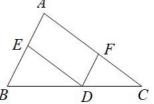



∵ MF 平分∠EMN (已知),

$$\therefore \angle EMF = \frac{1}{2} \angle EMN = 48^{\circ} ($$
 角平分线定义) .

∵ AB//CD (已证),





..... 3分

证明: 方法1 :: DE // AC(已知)

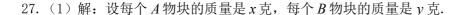
$$\therefore \angle EDF = \angle BAC$$
 (等量代换)

方法 2 ∵ DE // AC (已知)

∴
$$\angle EDF = \angle BAC$$
 (同角的补角相等)

..... 3 4

(2) ①补全备用图



$$\therefore \angle BAN = 180^{\circ} - \angle ANF = 130^{\circ}$$

$$\therefore \angle BAM = \angle BAN - \angle MAN = 40^{\circ}$$

∴
$$\angle BAC = 2\angle BAM = 80^{\circ}$$
 (角平分线定义)

又:
$$\angle EDF = \angle BAC$$
 (己证)

根据题意,得
$$\begin{cases} 4x + 7y = 400 \\ 8x + 9y = 600 \end{cases}$$

解得:
$$\begin{cases} x = 30 \\ y = 40 \end{cases}$$

答:每个
$$A$$
物块的质量是30克,每个 B 物块的质量是40克.

(2) 方法 1: 设有 m 个 B 物块,则有(30-m)个 A 物块	4分
根据题意得 $\begin{cases} 30(30-m) + 40m \leq 1000 \\ 30-m \leq 22 \end{cases}$	5 分
解得: 8≤ <i>m</i> ≤10	6分
∵m 为整数	
$\therefore m = 8, 9, 10$	
答:有8或9或10个B物块	7分
方法 2: 设弹簧下挂 A 物块 m 个,则挂 B 物块(30-m)个	4 分
根据题意得 $30m + 40(30 - m) \leq 1000$	5分
解得: <i>m</i> ≥20	
∵ <i>m</i> ≤22 且 <i>m</i> 为整数	
∴ m 为 20, 21, 22	6分
$\stackrel{}{=}$ $m=20$ 时, $30-m=10$;	
当 $m=21$ 时, $30-m=9$;	
$\stackrel{\smile}{\rightrightarrows} m = 22 \stackrel{\smile}{\bowtie} , 30 - m = 8 ,$	
答: 有8或9或10个B物块	7分
28. (1) ∠3 ···································	
(2) ①过点 G 作 GH // AB ·············2 分	
$\therefore \angle BEG = \angle EGH$	H G
∵ <i>AB // CD</i>	$A \qquad E \qquad B$
∴ GH // CD	
$\therefore \angle DFG = \angle FGH$	
\therefore $\angle EGF = \angle FGH - \angle EGH = \angle DFG - \angle BEG$	C F D
\therefore $\angle DFG = 50^{\circ}$	
$\therefore \angle EGF = 50^{\circ} - \angle BEG$	
∵ ∠BEG 是 ∠EGF 的 "6 系数补角"	
$\therefore \angle EGF + 6 \angle BEG = 180^{\circ}$	
$\therefore 50^{\circ} - \angle BEG + 6 \angle BEG = 180^{\circ}$	

 $\therefore \angle BEG = 26^{\circ}$

② $45^{\circ} - \frac{1}{4}\alpha - \frac{1}{4}\beta$ 或 $45^{\circ} - \frac{1}{4}\beta + \frac{1}{4}\alpha$ 或 $45^{\circ} - \frac{1}{4}\alpha + \frac{1}{4}\beta$ 或 $\frac{1}{4}\alpha + \frac{1}{4}\beta - 45^{\circ}$ ………7 分

情况 1: 当点 H 在 AB , CD 之间 , EF 右侧 , 如图

过点 M 作 MG // AB

- $\therefore AB // CD$
- $\therefore \angle BEF + \angle DFE = 180^{\circ}$
- $\therefore \angle BEH = \alpha$, $\angle DFH = \beta$
- $\therefore \angle FEH + \angle EFH = 180^{\circ} \angle BEH \angle DFH = 180^{\circ} \alpha \beta$
- ∵ ∠EFH 与 ∠FEH 两个角的平分线交于点 M

$$\therefore$$
 $\angle 1 = \angle 2 = \frac{1}{2} \angle FEH$, $\angle 3 = \angle 4 = \frac{1}{2} \angle EFH$

- : MG // AB
- $\therefore \angle BEM = \angle EMG$

又: AB // CD

- ∴ MG // CD
- $\therefore \angle DFM = \angle FMG$

$$\therefore \angle EMF = \angle EMG + \angle FMG$$

$$= \angle BEM + \angle DFM$$

$$= \angle 2 + \angle BEH + \angle 4 + \angle DFH$$

$$= \frac{1}{2} \angle FEH + \angle BEH + \frac{1}{2} \angle EFH + \angle DFH$$

$$= \frac{1}{2} (\angle FEH + \angle EFH) + \angle BEH + \angle DFH$$

$$= \frac{1}{2} (180^\circ - \alpha - \beta) + \alpha + \beta$$

$$= 90^\circ + \frac{1}{2} (\alpha + \beta)$$

- *∵ ∠N* 是 *∠EMF* 的 "2系数补角"
- $\therefore \angle EMF + 2\angle N = 180^{\circ}$

$$\therefore \angle N = \frac{1}{2} (180^{\circ} - \angle EMF)$$

$$= 90^{\circ} - \frac{1}{2} \angle EMF$$

$$= 90^{\circ} - \frac{1}{2} \left[90^{\circ} + \frac{1}{2} (\alpha + \beta) \right]$$

$$= 45^{\circ} - \frac{1}{4} \alpha - \frac{1}{4} \beta$$

-----8 分

情况 2: 当点 H 在直线 AB 上方,直线 EF 右侧,如图

过点M作MG // AB

- $\therefore AB // CD$
- $\therefore \angle BEF + \angle DFE = 180^{\circ}$
- $\therefore \angle BEH = \alpha$, $\angle DFH = \beta$
- \therefore $\angle FEH + \angle EFH = 180^{\circ} + \angle BEH \angle DFH = 180^{\circ} + \alpha \beta$
- ∵ ∠EFH 与 ∠FEH 两个角的平分线交于点 M
- $\therefore \angle FEM = \angle HEM = \frac{1}{2} \angle FEH$, $\angle EFM = \angle HFM = \frac{1}{2} \angle EFH$
- ∵ MG // AB
- $\therefore \angle BEM = \angle EMG$

又: AB // CD

- ∴ MG // CD
- $\therefore \angle DFM = \angle FMG$

$$\therefore \angle EMF = \angle EMG + \angle FMG$$

$$= \angle BEM + \angle DFM$$

$$= \angle HEM - \angle BEH + \angle HFM + \angle DFH$$

$$= \frac{1}{2} \angle FEH - \angle BEH + \frac{1}{2} \angle EFH + \angle DFH$$

$$= \frac{1}{2} (\angle FEH + \angle EFH) - \angle BEH + \angle DFH$$

$$= \frac{1}{2} (180^\circ + \alpha - \beta) - \alpha + \beta$$

$$= 90^\circ + \frac{1}{2} (\beta - \alpha)$$

- $\therefore \angle N$ 是 $\angle EMF$ 的"2系数补角"
- $\therefore \angle EMF + 2\angle N = 180^{\circ}$

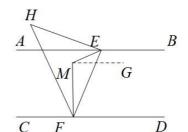
$$\therefore \angle N = \frac{1}{2} (180^{\circ} - \angle EMF)$$

$$= 90^{\circ} - \frac{1}{2} \angle EMF$$

$$= 90^{\circ} - \frac{1}{2} \left[90^{\circ} + \frac{1}{2} (\beta - \alpha) \right]$$

$$= 45^{\circ} - \frac{1}{4} \beta + \frac{1}{4} \alpha$$

-----8 分


情况 3: 当点 H 在直线 AB 上方, 直线 EF 左侧, 如图

过点M作MG // AB

- $\therefore AB // CD$
- $\therefore \angle AEF + \angle CFE = 180^{\circ}$
- $\therefore \angle BEH = \alpha$, $\angle DFH = \beta$
- $\therefore \angle AEH = 180^{\circ} \alpha$, $\angle CFH = 180^{\circ} \beta$

D

$$\therefore \angle FEH + \angle EFH = 180^{\circ} + \angle AEH - \angle CFH = 180^{\circ} + (180^{\circ} - \alpha) - (180^{\circ} - \beta) = 180^{\circ} + \beta - \alpha$$

$$\therefore$$
 $\angle FEM = \angle HEM = \frac{1}{2} \angle FEH$, $\angle EFM = \angle HFM = \frac{1}{2} \angle EFH$

$$\therefore \angle AEM = \angle EMG$$

$\nabla : AB // CD$

$$\therefore MG // CD$$

$$\therefore \angle CFM = \angle FMG$$

$$\therefore \angle EMF = \angle EMG + \angle FMG$$

$$= \angle AEM + \angle CFM$$

$$= \angle HEM - \angle AEH + \angle HFM + \angle CFH$$

$$= \frac{1}{2} \angle FEH - \angle AEH + \frac{1}{2} \angle EFH + \angle CFH$$

$$= \frac{1}{2} (\angle FEH + \angle EFH) - \angle AEH + \angle CFH$$

$$= \frac{1}{2} (180^\circ + \beta - \alpha) - (180^\circ - \alpha) + (180^\circ - \beta)$$

$$= 90^\circ + \frac{1}{2} (\alpha - \beta)$$

∵∠N 是 ∠*EMF* 的 "2系数补角"

$$\therefore \angle EMF + 2\angle N = 180^{\circ}$$

$$\therefore \angle N = \frac{1}{2} (180^{\circ} - \angle EMF)$$

$$= 90^{\circ} - \frac{1}{2} \angle EMF$$

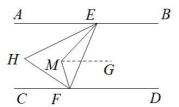
$$= 90^{\circ} - \frac{1}{2} \left[90^{\circ} + \frac{1}{2} (\alpha - \beta) \right]$$

$$= 45^{\circ} - \frac{1}{4} \alpha + \frac{1}{4} \beta$$

-----8分

情况 4: 当点 H 在 AB , CD 之间 , EF 左侧 , 如图

过点 M 作 MG // AB


$$\therefore \angle AEF + \angle CFE = 180^{\circ}$$

$$\therefore \angle BEH = \alpha$$
, $\angle DFH = \beta$

$$\therefore \angle AEH = 180^{\circ} - \alpha$$
, $\angle CFH = 180^{\circ} - \beta$

$$\therefore \angle FEH + \angle EFH = 180^{\circ} - \angle AEH - \angle CFH = 180^{\circ} - (180^{\circ} - \alpha) - (180^{\circ} - \beta) = \alpha + \beta - 180^{\circ}$$

$$\therefore$$
 $\angle EFH$ 与 $\angle FEH$ 两个角的平分线交于点 M

$$\therefore \angle FEM = \angle HEM = \frac{1}{2} \angle FEH \ , \ \angle EFM = \angle HFM = \frac{1}{2} \angle EFH$$

: MG // AB

 $\therefore \angle AEM = \angle EMG$

又: AB // CD

∴ MG // CD

$$\therefore \angle CFM = \angle FMG$$

$$\therefore \angle EMF = \angle EMG + \angle FMG$$

$$= \angle AEM + \angle CFM$$

$$= \angle HEM + \angle AEH + \angle HFM + \angle CFH$$

$$= \frac{1}{2} \angle FEH + \angle AEH + \frac{1}{2} \angle EFH + \angle CFH$$

$$= \frac{1}{2} (\angle FEH + \angle EFH) + \angle AEH + \angle CFH$$

$$= \frac{1}{2} (\alpha + \beta - 180^{\circ}) + (180^{\circ} - \alpha) + (180^{\circ} - \beta)$$

$$= 270^{\circ} - \frac{1}{2} (\alpha + \beta)$$

∵ ∠N 是 ∠EMF 的 "2系数补角"

$$\therefore \angle EMF + 2\angle N = 180^{\circ}$$

$$\therefore \angle N = \frac{1}{2} (180^{\circ} - \angle EMF)$$

$$= 90^{\circ} - \frac{1}{2} \angle EMF$$

$$= 90^{\circ} - \frac{1}{2} \left[270^{\circ} - \frac{1}{2} (\alpha + \beta) \right]$$

$$= \frac{1}{4} \alpha + \frac{1}{4} \beta - 45^{\circ}$$

-----8分

情况 5: 当点 H 在直线 CD 下方, 直线 EF 左侧, 如图

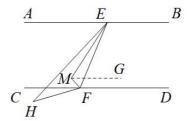
过点 M 作 MG // AB

∵ AB // CD

$$\therefore \angle AEF + \angle CFE = 180^{\circ}$$

$$\therefore \angle BEH = \alpha$$
, $\angle DFH = \beta$

$$\therefore \angle AEH = 180^{\circ} - \alpha$$
, $\angle CFH = 180^{\circ} - \beta$


$$\therefore \angle FEH + \angle EFH = 180^{\circ} - \angle AEH + \angle CFH = 180^{\circ} - (180^{\circ} - \alpha) + (180^{\circ} - \beta) = 180^{\circ} + \alpha - \beta$$

∵ ∠EFH 与 ∠FEH 两个角的平分线交于点 M

$$\therefore \angle FEM = \angle HEM = \frac{1}{2} \angle FEH$$
, $\angle EFM = \angle HFM = \frac{1}{2} \angle EFH$

∵ MG // AB

$$\therefore \angle AEM = \angle EMG$$

又: AB // CD

$$\therefore MG // CD$$

$$\therefore \angle CFM = \angle FMG$$

$$\therefore \angle EMF = \angle EMG + \angle FMG$$

$$= \angle AEM + \angle CFM$$

$$= \angle HEM + \angle AEH + \angle HFM - \angle CFH$$

$$= \frac{1}{2} \angle FEH + \angle AEH + \frac{1}{2} \angle EFH - \angle CFH$$

$$= \frac{1}{2} (\angle FEH + \angle EFH) + \angle AEH - \angle CFH$$

$$= \frac{1}{2} (180^\circ + \alpha - \beta) + (180^\circ - \alpha) - (180^\circ - \beta)$$

$$= 90^\circ + \frac{1}{2} (\beta - \alpha)$$

$$\therefore \angle EMF + 2\angle N = 180^{\circ}$$

$$\therefore \angle N = \frac{1}{2} (180^{\circ} - \angle EMF)$$

$$= 90^{\circ} - \frac{1}{2} \angle EMF$$

$$= 90^{\circ} - \frac{1}{2} \left[90^{\circ} + \frac{1}{2} (\beta - \alpha) \right]$$

$$= 45^{\circ} - \frac{1}{4} \beta + \frac{1}{4} \alpha$$

------8 分

情况 6: 当点 H 在直线 CD 下方,直线 EF 右侧,如图

过点 M 作 MG // AB

$$\therefore AB // CD$$

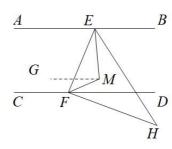
$$\therefore \angle BEF + \angle DFE = 180^{\circ}$$

$$\therefore \angle BEH = \alpha$$
, $\angle DFH = \beta$

$$\therefore$$
 $\angle FEH + \angle EFH = 180^{\circ} - \angle BEH + \angle DFH = 180^{\circ} - \alpha + \beta$

$$\therefore$$
 $\angle EFH$ 与 $\angle FEH$ 两个角的平分线交于点 M

$$\therefore \angle FEM = \angle HEM = \frac{1}{2} \angle FEH$$
, $\angle EFM = \angle HFM = \frac{1}{2} \angle EFH$


$$\therefore \angle BEM = \angle EMG$$

 \mathbb{Z} : AB // CD

$$\therefore MG // CD$$

$$\therefore \angle DFM = \angle FMG$$

$$\therefore \angle EMF = \angle EMG + \angle FMG$$
$$= \angle BEM + \angle DFM$$

$$= \angle HEM + \angle BEH + \angle HFM - \angle DFH$$

$$= \frac{1}{2} \angle FEH + \angle BEH + \frac{1}{2} \angle EFH - \angle DFH$$

$$= \frac{1}{2} (\angle FEH + \angle EFH) + \angle BEH - \angle DFH$$

$$= \frac{1}{2} (180^{\circ} - \alpha + \beta) + \alpha - \beta$$

$$= 90^{\circ} + \frac{1}{2} (\alpha - \beta)$$

- ∵ ∠N 是 ∠EMF 的 "2 系数补角"
- $\therefore \angle EMF + 2\angle N = 180^{\circ}$

$$\therefore \angle N = \frac{1}{2} (180^{\circ} - \angle EMF)$$

$$= 90^{\circ} - \frac{1}{2} \angle EMF$$

$$= 90^{\circ} - \frac{1}{2} \left[90^{\circ} + \frac{1}{2} (\alpha - \beta) \right]$$

$$= 45^{\circ} - \frac{1}{4} \alpha + \frac{1}{4} \beta$$

-----8分