北京市西城区 2023－2024 学年度第二学期期末试卷

1．本试卷共 6 页，共两部分，四道大题， 26 道小题。其中第一大题至第三大题为必做题，满分 100 分。第四大题为选做题，满分 10 分，计入总分，但卷面总分不超过 100 分。美试时间 100 分钟。
2．在试卷和答题卡上准确犊写学校，环级，姓名和学号。
3．试题答案一律填涂或书写在答旗卡上，在试卷上作答无效。
4．在答题卡上，选择题，作图题用 $2 B$ 铝䈅作答，其他试題用黑色字迹签字笔作答。
5．考试结束，请将考试材料一并交回。

第一部分 选择题

一，选择题（共 16 分，每题 2 分）

第 1－8 题均有四个选项，符合题意的选项只有一个．
1．下列各组图形或图案中，能将其中一个图形或图案通过平移得到另一个图形或图案的是

（A）

（B）

（C）

（D）

2．在平面直角坐标系中，下列各点位于第二象限的是
（A）$(1,-2)$
（B）$(-1,2)$
（C）$(1,2)$
（D）$(-1,-2)$

3．下列调查中，适合采用全面调查的是
（A）对乘坐飞机的旅客进行安检
（B）调查某批次海车的抗撞击能力
（C）调查某市居民垃圾分类的情况
（D）调查市场上冷冻食品的质量情况

4．若 $a<b$ ，则下列不等式不一定成立的是
（A）$a-1<b-1$
（B）$-2 a>-2 b$
（C）$a+b<2 b$
（D）$a^{2}<b^{2}$

5．下列图形中，由 $A B / / C D$ ，能得到 $\angle 1=\angle 2$ 的是

（A）

（B）

（C）

（D）

6．出 $\frac{x}{2}-\frac{y}{3}=1$ 可以得到用 x 表示 y 的式子题
（A）$y=\frac{3 x-2}{2}$
（B）$y=\frac{3}{2} x-\frac{1}{2}$
（C）$y=3-\frac{3}{2} x$
（D）$y=\frac{3}{2} x-3$

7．下列俞题：
（1）经过且线外一点，有且貝有一条直线与选条直线平行
（2）在同一平面内，过一点有且只有一采直线与已知直线垂直
（3）两条直线被第三条直线所㣫，内错角相等
（4）所有实数都可以用数轴上的点表示
其中真命题的个数是
（A） 1
（B） 2
（C） 3
（D） 4

8．右图是某个一元一次不等式的解集在数轴上的表示，若该不等式恰有两个非负整数解，则 a 的取值范围是
（A） $2 \leqslant a<3$
（B） $1<a \leqslant 2$
（C） $1 \leqslant a<2$
（D） $0 \leqslant a \leqslant 1$

第二部分 非选择题

二，填空题（共 16 分，每题 2 分）

9．在实数 $\sqrt{4}, \frac{\sqrt{3}}{3}, 3.14159, \frac{22}{7}$ 中，是无理数的是＿—．
10，$\frac{9}{4}$ 的算术平方根是 \qquad ．
11．已知二元一次方程 $x+2 y=7$ ，写出该方程的一组正整数解： \qquad ．
12．命题＂对顶角相等＂改写成＂如果……，那么……＂的形式是 \qquad ．

13．一个样本容量为 63 的样本，最大值是 172 ，最小稙是 149 ，取组距为 3 ，则这个样本可以分成 \qquad组．

14，平面直角坐标系中，点 $M(3,1), N(a, a+3)$ ，若直线 $M N$ 与 y 轴平行，则点 N 的坐标是 \qquad ．

15．如图，点 A, B, C 在同一条直线上，$A D \perp A E$ ，且 $A D / / B F$ ， $\angle C B F=\alpha$ ，则 $\angle C A E=$ \qquad （用含 α 的代数式婊示）。

16．关于 x, y 的二元一次方程 $k x-y=1$ ，且当 $x=2$ 时，$y=5$ ．
（1）k 的值是 \qquad ：
（2）当 $x<2$ 时，对于每一个 x 的值，关于 x 的不等式 $x+n>k x-1$ 总成立，则 n 的取值范围是 \qquad。
三，解答题（共 68 分，第 17 题 8 分，第 18 题 11 分，第19－21题，每题 9 分，第 22 题 5分，第 23 题 9 分，第 24 题 8 分）
17．（1）计算：$\sqrt[3]{8}+|-\sqrt{3}|-\sqrt{4}-2 \sqrt{3}$ ．
（2）求等式中 x 的值：$(x-1)^{2}=16$ ．
18．（1）解方程组 $\left\{\begin{array}{l}2 x-3 y=3, \\ 4 x-y=-4 .\end{array}\right.$
（2）解不等式组 $\left\{\begin{array}{l}3 x-2 \geqslant x, \\ \frac{x}{4}-1<\frac{8-3 x}{4}\end{array}\right.$ ，并写出它的整数解．
19．（1）如图 1，点 P 是 $\angle A B C$ 的边 $B C$ 上一点．

图 1

按照要求回答下列问题：
（1）过点 P 分别画出射线 $B C$ 的垂线 $P E$ 和射线 $B A$ 的垂线 $P F, F$ 是垂足；
（2）线段 $P F$ \qquad $P B$（填＂$<$＂＂$\gg "$＂$=$＂）的理由是 \qquad ．
（2）如图 2，点 E, F 分别在 $A B, B C$ 上，点 D, G 在 $A C$ 上，$E G, F D$ 的延长线交于

点 H ．若 $\angle C D F=\angle A, \angle B D F+\angle B E G=180^{\circ}$ ．

求证：$\angle B D F=\angle H$ ．
请将下面的证明过程补充完整：
证明：$\because \angle C D F=\angle A$ ，
$\therefore A B / / H F$ \qquad ）（填推理的依据）

$\therefore \angle B D F=\angle A B D$ \qquad ）（填推理的依据）
$\because \angle B D F+\angle B E G=180^{\circ}$ ，
$\therefore \angle A B D+\angle B E G=180^{\circ}$ ．
\therefore \qquad ／／EH．
$\therefore \angle B D F=\angle H$ \qquad （填推理的依据）
 $C^{\prime}(1,0)$ ．

（2）将二角形 $A B C$ 平移到三化形 $A_{1} B_{1} C_{1}$ ，其中点 A, B, C 的对应点分别是 $A_{1}, ~ B_{1}$ ， C_{1} ．已知点 A_{1} 的坐标起（3，2）。
（1）点 B_{1} 们坐标是 \qquad ，点 C_{1} 的坐标是 \qquad ；
（2）写出一种将三角形 $A B C$ 平移到三角形 $A_{1} B_{1} C_{1}$ 的方法： \qquad ．

21．某商店决定购进甲，乙两种文创产品，若购进甲种文创产品 7 件，乙种文创产品 3 件，则费用是 285 元；若购进甲种文创产品 2 件，乙种文创产品 6 件，则费用是 210 元．
（1）求购进的甲，乙两种文创产品每件的费用各是多少元？
（2）若该商店决定购进这两种文创产品共 200 件，考虑市场需求和资金周转，用于购买这 200 件文创产品的总费用不少于 5350 元，且不超过 5368 元，求该商店共有几种购进这两种文创产品的方案．

22．在今年第 29 个世界读抒日来临之际，某校数学活动小组为了解七年级学生敏天阅读时长的情况设计了一份调查问卷，同时随机邀请七年级的一些学生完成间畨调查，获得了这些学生平均每天阅读时长的数据，并对这些数据进行了整理，绘制成频数分布表，频数分布直方图。下面给出了部分信息。
a．平均每天阅读时长频数分布表，频数分布直方图分别如图 1，图2所示。

咸绩	頻数
$0 \leqslant x<30$	m
$30 \leqslant x<60$	20
$60 \leqslant x<90$	n
$90 \leqslant x<120$	7
$120 \leqslant x<150$	3

图 1

图2
b．其中 $60 \leqslant x<90$ 这一组的平均每天阅读时长是：
$60,60,70,70,73,75,75,75,80,83,84,84,84,85,89$.
根据以上信息，回答下列问题：
（1）表中 $m=$ \qquad ，$n=$ \qquad ，参与问卷调查的学生共有 \qquad人；
（2）补全频数分布直方图；
（3）为了鼓励学生养成阅读习惯，语文老师建议对七年级平均每天阅读时长在 75 分钟及以上的学生授予＂阅读达人＂称号．已知七年级共有 990 名学生，请估计该年级共有多少名学生获得＂阅读达人＂称号．

23．如图，直线 $A B / / C D$ ，直线 $E F$ 与直线 $A B, C D$ 分别交于点 $E, F, \angle A E F$ 的平分线交 $C D$ 于点 P ．
（1）求证：$\angle F E P=\angle F P E$ ；

（2）点 G 是射线 $P F$ 上一个动点（点 G 不与点 P, F 重合），$\angle F E G$ 的平分线交直线 $C D$ 于点 H ，过点 H 作 $H N / / P E$ 交直线 $A B$ 于点 N ，
（1）当点 G 在线段 $P F$ 上时，依题意补全图形，用等式表示 $\angle E H N$ 和 $\angle E G F$ 之间的数量关系，并证明；
（2）当点 G 在线段 $P F$ 的延长线上时，直接写出用等式表示的 $\angle E H N$ 和 $\angle E G F$ 之间的数量关系。

24．在平㑑要角坐标系 $x O y$ 中，已知点 $M(a, b)$（点 M 不与原点 O 重合），将点 $Q(x+k a, y+k b)(k>0)$ 移为点 $P(x, y)$ 关手点 M 的＂k 倍平移点＂．
（1）已知点 P 的坐标思（ 4,3 ），
（1）咸点 $M(2,-2)$ ，则点 P 芙于点 M 的＂ 2 倍平移点＂Q 的坐标是 \qquad ；
（2）点 $N(-3,-2), T(1,-2)$ ，点 M 在线段 $N T$ 上，犍点 $R(r, 0)$ 作直线 $I \perp x$ 轴，若直线 I 上存在点 P 关于点 M 移＂ 2 倍平移点＂。 惐 r 的取值范围．
（2）点 $A(-1,-1), B(1,-1), E(5,7), R(8,4)$, ，$A B$ 为边在直线 $A B$ 的上方作正方形 $A B C D$ ，点 M 在正方形 $A B C D$ 的効上，且 $a>0, b>0$ ，对于正方形 $A B C D$的边上任意一点 P ，若线段 $E F$ 上都不存在点 P 关于点 M 的＂k倍平移点＂，直接写出 k 的取值范比．

四，选做题（共 10 分，第 1 题 4 分，第 2 题 6 分）

25．将非负实数 x＂四舍五入＂到个位的值记为 $\lfloor x\rfloor$ ，当 n 为非负整数時，
（1）若 $n-\frac{1}{2} \leqslant x<n+\frac{1}{2}$ ，则 $\lfloor x\rfloor=n$ ；（2）若 $\lfloor x\rfloor=n$ ，则 $n-\frac{1}{2} \leqslant x<n+\frac{1}{2}$ ．
如，$\lfloor 0\rfloor=\lfloor 0.49\rfloor=0,\lfloor 0.64\rfloor=\lfloor\lfloor .49\rfloor=1,\lfloor 2\rfloor=2$ ．
（1）$\lfloor\pi\rfloor=$ \qquad ；
（2）若 $\lfloor t+1\rfloor=\frac{3}{2} t$ ，则满足条吽的实数 t 的值是 \qquad ．

26．在平面直角坐标系 $x O y$ 中，给定 n 个不同的点 $P_{1}\left(x_{1}, y_{2}\right), P_{2}\left(x_{2}, y_{2}\right), \cdots, P_{n}\left(x_{a}, y_{n}\right)$ ，若 $x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2} \cdots, y_{n}$ 中共有 t 个不同的数，则称 E 为这 n 个不同的点的特征值．图形 F 上任意 n 个不同的点 $P_{1}\left(x_{1}, y_{l}\right), P_{2}\left(x_{2}, y_{2}\right), \cdots, P_{n}\left(x_{n}, y_{n}\right)$ 中，特征值最小的一组点的特征值称为图形 F 的 n 所特征值．
（1）点 $A_{1}(-1,1), A_{2}(3,-1), A_{3}(2,3)$ 的特征值是 \qquad ：
（2）已知正方形 $A B C D$ 的四个顶点分别为 $A(a, 0), B(a+2,0), C(a+2,2), D(a, 2)$ ，
（1）直接写出正方形 $A B C D$ 的 4 阶特征值的最小值：

北京市西城区 2023－2024 学年度第二学期期末试卷

七年级数学答案及评分参考

一，选择题（共 16 分，每题 2 分）

题号	1	2	3	4	5	6	7	8
答案	B	B	A	D	B	D	C	C

二，填空题（共 16 分，每题 2 分）
9．$\frac{\sqrt{3}}{3}$ ．
10．$\frac{3}{2}$ ．
11．答案不唯一，如 $\left\{\begin{array}{l}x=1, \\ y=3 .\end{array}\right.$

12．如果两个角是对顶角，那么这两个角相等
13． 8.
14．（3，6）．
15． $90^{\circ}+\alpha$ ．
16． $3, n \geqslant 3$ ．
三，解答题（共 68 分，第 17 题 8 分，第 18 题 11 分，第19－21题，每题 9 分，第 22 题 5分，第 23 题 9 分，第 24 题 8 分）
17．（1）计算：$\sqrt[3]{8}+|-\sqrt{3}|-\sqrt{4}-2 \sqrt{3}$ ．
\qquad
（2）解：由 $(x-1)^{2}=16$ ，
可得 $x-1=4$ 或 $x-1=-4$ ，
所以 $x=5$ 或 $x=-3$ ．
18．（1） $\begin{cases}2 x-3 y=3, & (1) \\ 4 x-y=-4 . & (2)\end{cases}$
解：（1）$\times 2-(2)$ ，得 $-5 y=10$ ．
\qquad
将 $y=-2$ 代入（1）中，得 $x=-\frac{3}{2}$ ．
所以，这个方程组的解是 $\left\{\begin{array}{l}x=-\frac{3}{2}, \\ y=-2 .\end{array}\right.$
（2）$\left\{\begin{array}{l}3 x-2 \geqslant x, \\ \frac{x}{4}-1<\frac{8-3 x}{4}\end{array}\right.$ ．
解：解不等式（1），得 $x \geqslant 1$ ．
解不等式（2），得 $x<3$ ．．． 8 分
所以这个不等式组的解集是 $1 \leqslant x<3$ ，它的整数解是 1,2 ．

19．解：（1）（1）画图如图 1；

图 1

图2
（2）$<$ ，垂线段最短．
（2）证明：$\because \angle C D F=\angle A$ ，
$\therefore A B / / H F$（同位角相等，两直线平行）（填推理的依据）。
$\therefore \angle B D F=\angle A B D$（两直线平行，内错角相等）（填推理的依据）．
$\because \angle B D F+\angle B E G=180^{\circ}$ ，
$\therefore \angle A B D+\angle B E G=180^{\circ}$ ．
$\therefore \underline{B D} / / E H$ ．
$\therefore \angle B D F=\angle H$（两直线平行，同位角相等）（填推理的依据）．

20．解：（1）三角形 $A B C$ 如图所示，

在图中分别取点 $D(-4,4), E(1,4), F(1,-1)$ ．

$$
\begin{aligned}
& S_{\text {三角形 } A B C}=S_{\text {四边形 } B F E D}-S_{\text {三角形 } B F C}-S_{\text {三角形 } C E A}-S_{\text {三角形 } A D B} \\
& =25-\frac{5}{2}-4-\frac{15}{2}=11 . \ldots \ldots \ldots . ~
\end{aligned}
$$

（2）（1）$(0,-3),(5,-2)$ ；
（2）答案不唯一，如三角形 $A B C$ 先向右平移 4 个单位长度，再向下平移 2 个单位长度。

21．解：（1）设购进甲种文创产品每件需 x 元，乙种文创产品每件需 y 元．
依题意，得 $\left\{\begin{array}{l}7 x+3 y=285, \\ 2 x+6 y=210\end{array}\right.$
解这个方程组，得 $\left\{\begin{array}{l}x=30, \\ y=25 .\end{array}\right.$
答：购进甲种文创产品每件需 30 元，乙种文创产品每件需 25 元．
（2）设购买甲种文创产品 m 件，则购买乙种文创产品（200－m）件．
依题意，得 $\left\{\begin{array}{l}30 m+25(200-m) \leqslant 5368, \\ 30 m+25(200-m) \geqslant 5350 .\end{array}\right.$
解这个不等式组，得 $70 \leqslant m \leqslant 73 \frac{3}{5}$ ．
因为 m 是整数，
所以 $m=70,71,72,73,200-m=130,129,128,127$ 。
答：该商店共有 4 种进货方案。
\qquad
22．解：（1） $5,15,50$ ；
（2）如图所示．

（3） $990 \times \frac{20}{50}=396$（名）．
答：估计该年级共有 396 名学生获得＂阅读达人＂称号．

23．（1）证明：$\because \angle A E F$ 的平分线交 $C D$ 于点 P ，
$\therefore \angle A E P=\angle F E P$ ．
$\because A B / / C D$ ，
$\therefore \angle A E P=\angle F P E$ ．
$\therefore \angle F E P=\angle F P E$ ．
（2）（1）补全图形如图；

$$
\angle E G F=2 \angle E H N
$$

证明：设 $\angle P E G=\alpha$ ，则 $\angle E G F=\angle A E G=\angle A E P+\alpha=\angle G E F+2 \alpha$ ．
$\because \angle F E G$ 的平分线交直线 $C D$ 于点 H ，
$\therefore \angle G E F=2 \angle G E H$ ．
$\therefore \angle E G F=2 \angle G E H+2 \alpha$ ．
$\because H N / / P E$ ，
$\therefore \angle E H N=\angle P E H=\angle G E H+\alpha$ ．

$\therefore \angle G E H=\angle E H N-\alpha$ ．
$\therefore \angle E G F=2 \angle E H N$ ．
（2）$\angle E G F+2 \angle E H N=180^{\circ}$ ．． 9 分
24．（1）（1）（8，－1）；．． 1 分
（2）\because 点 M 在线段 $N T$ 上，且 $N(-3,-2), T(1,-2)$ ，
\therefore 设点 M 的坐标为 $(x,-2)$ ，其中 $-3 \leqslant x \leqslant 1$ ．
设点 P 关于点 M 的＂ 2 倍平移点＂为 P_{1} 。
$\because P(4,3)$ ，
$\therefore P_{1}(4+2 x,-1)$ ，其中 $-3 \leqslant x \leqslant 1$ ．
\therefore 当 $x=-3$ 时， $4+2 x=-2$ ，
当 $x=1$ 时， $4+2 x=6$ ．
\because 直线 l 上存在点 P 关于点 M 的＂ 2 倍平移点＂，
$\therefore-2 \leqslant r \leqslant 6$ ．
（2） $0<k<5$ 或 $k>9$ ．．． 8 分
四，选做题（共 10 分，第 1 题 4 分，第 2 题 6 分）
25．（1）3；．．． 1 分

26．（1）4；．． 2 分
（2）（1） 2 ；．． 4 分
（2）$-2<a<2$ ．． 6 分

