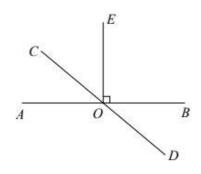
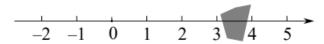
2024 北京三十五中初一(下)期中


数学

考生须知:

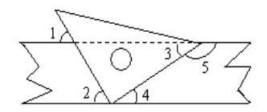
- 1. 本试卷共8页, 共两部分, 四道大题, 29 道小题, 其中第一大题至第三大题为必做题, 满 分 100 分, 第四大题为选做题, 满分 10 分, 计入总分, 但卷面总分不超过 100 分.
- 2. 考试时间 100 分钟.
- 3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效.
- 4. 在答题卡上,选择题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答.


第一部分 选择题

- 一、选择题(每题2分,共16分)第1-8题均有四个选项,符合题意的选项只有一个.
- 1. 下列各数中的无理数是().
- A. $\frac{1}{4}$ B. 0.3 C. $-\sqrt{5}$ D. $\sqrt[3]{8}$
- 2. 已知a < b,下列不等式变形中正确的是()、
- A. a+5>b+5 B. a-1>b-1 C. -3a>-3b D. $\frac{a}{2}>\frac{b}{2}$
- 3. 如图,直线 AB 与 CD 交于点 O, $OE \perp AB$, 若 $\angle AOD = 140^{\circ}$,则 $\angle COE$ 的度数为 ().

- A. 40° B. 50° C. 60° D. 70°
- 4. 若 $(k-1)x^{|k|}-5y=2$ 是关于x、y的二元一次方程,那么k的取值满足())
- A. k = -1 B. k = 1 C. $k \ne 1$ D. $k = \pm 1$

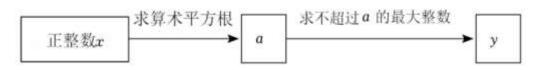
- 5. 如图, 一条数轴被污渍覆盖了一部分, 把下列各数表示在数轴上, 则被覆盖的数可能为()



- A. $-\pi$ B. $\sqrt{5}$ C. $\sqrt{13}$ D. $\sqrt{17}$
- 6. 若 $\begin{cases} x=2\\ y=1 \end{cases}$, 是关于 x, y 的二元一次方程 ax-y=3 的一个解,则 a 的值为()

A. -1 B. 1 C. -2 D. 2

7. 将一直角三角板与两边平行的纸条如图所示放置,下列结论正确的个数是()

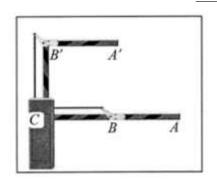


- (1) $\angle 1 = \angle 2$; (2) $\angle 3 = \angle 4$; (3) $\angle 2 + \angle 4 = 90^{\circ}$; (4) $\angle 4 + \angle 5 = 180^{\circ}$.

A. 1 B. 2 C. 3 D. 4

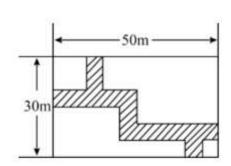
8. 对正整数x依次进行如下计算后得到y,称为对x进行了1次S运算,若将得到的值y作为x代入后再次 进行 S运算, 称为对 x进行了 2 次 S运算, 以此类推.

例如,对 14进行了一次 S运算后,得到的数值为 3,对 14进行了 2次 S运算后,得到的值为 1.已知如果 对正整数 x 进行了一次 S 运算后,得到 y=1,那么经过推理可得 x 的值可以为 1, 2, 3. 如果对正整数 x进行不超过 2 次 S运算后,得到 y=1,那么你认为满足条件的 x 的个数为 ().



A. 3 B. 15 C. 33 D. 255

第二部分 非选择题


二、填空题(每题2分,共16分)

- 9. $-\sqrt{6}$ 的相反数是 , $3-\pi$ 的绝对值是 .
- 10. 用不等式表示 a 的 2 倍与 b 的差是正数
- 11. 把命题"对顶角相等"改写成"如果…那么…"的形式为 ...
- 12. 已知实数 x, y满足 $|x-4| + \sqrt{y-8} = 0$, 则 y-x 的平方根是 .
- 13. 某车库的门禁如图所示,点 B,C 为旋转轴,门禁杆放平位置 AB 与抬起位置 A'B' 平行. 若 $\angle ACB' = 88^{\circ}$,则 $\angle A'B'C' =$ °.

- 14. 已知 6x-5y=16, 且 2x+3y=6, 则 4x-8y 的值为 .
- 15. 如图,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路,宽均为1米,其它部分均 种植花草.则种植花草的面积为 m^2 .

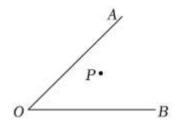
16. 为了传承中华文化,激发学生的爱国情怀,提高学生的文学素养,七年级举办了"清明赛诗会"活动,现有小刚、小强、小敏三位同学进入了最后冠军的角逐,规定:每轮分别决出第 1, 2, 3 名(没有并列),对应名次的得分都分别为 a, b, c (a > b > c 且 a, b, c 均为正整数),选手最后得分为各轮得分之和,得分最高者为冠军,如下表是三位选手在每轮比赛中的部分得分情况,小敏同学第三轮的得分为

	第一轮	第二轮	第三轮	第四轮	第五轮	第六轮	最后得分
小刚	а			а			24
小强		а			b	С	13
小敏		С		b			11

三、解答题(共 68 分, 第 17-19、23-25 题每题 6 分, 第 20 题 10 分, 第 21、22、26 每题 5 分, 第 27 题 7 分)解答应写出文字说明、演算步骤或证明过程.

17. 解不等式 $3(x+1)-5x \le 7$,并把解集在数轴上表示出来.

18. \(\psi\)\(\psi\) -2^2 +
$$\sqrt{9}$$
 - $\sqrt[3]{-8}$ + $\left|1-\sqrt{3}\right|$

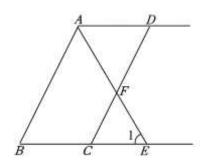

19. 解方程组
$$\begin{cases} 3x + 4y = 2 \\ 3x - 2y = 8 \end{cases}$$

20. 求下列各式中的 x 值:

(1)
$$x^2 - 1 = \frac{5}{4}$$
; (2) $3(x-4)^3 = -375$.

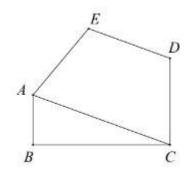
21. 作图题

已知: $\angle AOB$ 及 $\angle AOB$ 内部一点 P.



- (1) 过点 *P* 画直线 *PC* // *OA* 交 *OB* 于点 *C*;
- (2) 过点 P 画线段 $PD \perp OB$ 于点 D;
- (3) 比较线段 PC与 PD 的大小是_____, 其依据是_____;

22. 如图,AD // BC, $\angle BAD$ 的平分线交 CD 于点 F, 交线段 BC 的延长线于点 E, $\angle CFE = \angle 1$. 求证: $\angle B + \angle BCD = 180^{\circ}$.

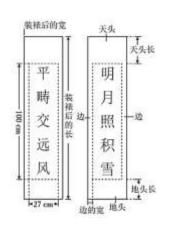


请将下面证明过程的推理及依据补充完整:

证明: :: AD // BC,

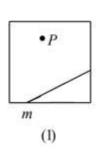
- ∴ ∠DAE = ∠1. (依据:)
- ∵AE 平分 ∠BAD,
- ∴ $\angle BAE = \angle DAE$. (依据:
- $\therefore \angle BAE = \angle 1$.
- $\therefore \angle CFE = \angle 1$,
- **∴** ∠*CFE* = ∠ . (依据: 等量代换)
- ∴ AB // CD . (依据:)
- ∴ ∠B + ∠BCD = 180°. (依据: ____)
- 23. 如图,已知AC //DE, $\angle D + \angle BAC = 180$ °

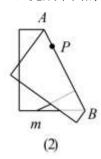
- (1) 求证: *AB // CD*;
- (2) 连接 CE, 恰好满足 CE 平分 $\angle ACD$. 若 $AB \perp BC$, $\angle CED = 35^{\circ}$, 求 $\angle ACB$ 的度数.
- 24. 列方程(组)解决问题

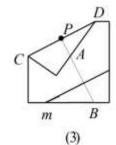

对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是 6:4,左、右边的宽相等,均为天头长与地头长的和的

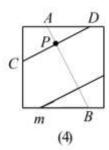
 $\frac{1}{10}$. 某人要装裱一幅对联,对联的长为100cm,宽为27cm. 若要求装裱后的长是装裱后的宽的 4 倍,

求边的宽和天头长.


(书法作品选自《启功法书》)






25. 学习了平行线后,小龙同学想出了"过已知直线 m 外一点 P 画这条直线的平行线的新方法",他是通 过折一张半透明的正方形纸得到的(如图(1)~(4)).

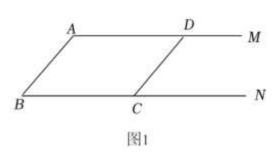
请你观察图(1)~(4),完成下面的填空题和选择题.

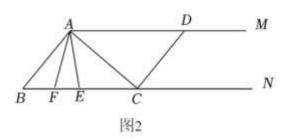
第一次折叠后(如图(2)所示),得到的折痕 AB 与直线 m 之间的位置关系是 ;将正方形纸 展开,再进行第二次折叠(如图(3)所示),得到的折痕 CD与第一次折痕之间的位置关系是;再 将正方形纸展开(如图(4)所示),可得第二次折痕CD所在的直线即为过点P的已知直线m的平行线.从 图中可知,小明画平行线的依据有()

- ①两直线平行,同位角相等; ②两直线平行,内错角相等:
- ③同位角相等,两直线平行; ④内错角相等,两直线平行.

- A. (1)(2) B. (2)(3) C. (3)(4) D. (1)(4)

26. 阅读材料:

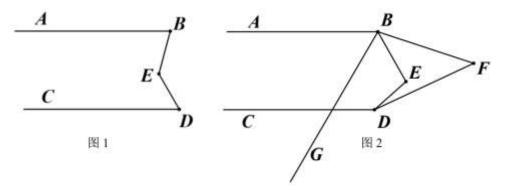

对非负实数x四舍五入到个位的值记作(x),


如:
$$(0.64) = 1, (1.352) = 1, (2.7) = 3, (\pi) = 3$$
,

试解决下面问题:

- (2) 判断下列命题是真命题还是假命题,是真命题的画"√",是假命题的画"×",
- ①对于非负实数 $x \times y$, (x+y)=(x)+(y). (判断对错)
- ②当 $x \ge 0$, m为非负整数时, (x+m)=(x)+m. (判断对错)
- (3) 若 $\left(\frac{1}{2}x-2\right)=4$, 则实数 x 的取值范围为______.
- 27. 如图 1, AM //BN, 点 D, 点 C 分别在射线 AM, BN 上且 $\angle BAD = \angle BCD$.

- (1) 求证: AB // DC;
- (2) 连接 AC,作 $\angle EAC = \angle DAC$,AE 交 BN 于点 E,作 $\angle BAE$ 的平分线 AF 交 BN 于点 F (如图 2),将 CD 沿 AM 方向水平向右平移.
- ①在 CD 的移动过程中, $\angle AEB$ 与 $\angle ACB$ 之间的数量关系是否随之发生变化?若不变,


请写出它们之间的数量关系,并证明. 若变化,试说明理由;

②当 CD 运动到 $\angle ACD = \angle AFB$ 时,求证: $\angle EAE = \angle ACB$.

四、选做题(共10分,第28题4分,第29题6分)

28. 对任意的实数 m 有如下规定: 用[m]表示不小于 m 的最小整数,例如 $\left[\frac{5}{2}\right]$ = 3,[5] = 5,[-1.3] = -1,请回答下列问题:

- (1) ① $0 \le [x] x < 1$: ② [x 2022] = [x] 2022; ③ [3x] = 3[x] ④ [x] + [y] = [x + y]; ⑤若 [x] = a (a 为整数),则 $a 1 < x \le a$. 以上五个命题中为真命题的是 (填序号).
- (2) 关于 x 的方程 [x-1] = 2x+1 的解为
- 29. 对于平面内的 $\angle M$ 和 $\angle N$,若存在一个常数 k > 0 ,使得 $\angle M + k \angle N = 360^\circ$,则称 $\angle N$ 为 $\angle M$ 的 k < 1 系补周角,如若 $\angle M = 90^\circ$,则 $\angle N$ 为 $\angle M$ 的 6 系补周角.

- (1) 若 $\angle H = 120^{\circ}$,则 $\angle H$ 的 4 系补周角的度数为 ;
- (2) 在平面内 AB // CD, 点 E 是平面内一点, 连接 BE, DE.
- ①如图 1, $\angle D = 60^{\circ}$, 若 $\angle B$ 是 $\angle E$ 的 3 系补周角, 求 $\angle B$ 的度数.
- ②如图 2, $\angle ABE$ 和 $\angle CDE$ 均为钝角,点 F 在点 E 的右侧,且满足 $\angle ABF = n\angle ABE$, $\angle CDF = n\angle CDE$ (其中 n 为常数且 n > 1),点 P 是 $\angle ABE$ 角平分线 BG 上的一个动点,在 P 点运动过程中,请你确定一个点 P 的位置,使得 $\angle BPD$ 是 $\angle F$ 的 k 系补周角,并直接写出此时的 k 值(用含 n 的式子表示).

参考答案

一、选择题(每题2分,共16分)

试题	1	2	3	4	5	6	7	8
答案	С	С	В	А	С	D	D	В

二、填空题(每题2分,共16分)

9	10	11	12	13	14	15	16
$\sqrt{6}$; $\pi-3$	2a-b>0	如果两个角是对顶角,那	±2	90°	10	1421	1
		么这两个角相等.					

三、解答题(共 68 分, 第 17-19、23-25 题每题 6 分, 第 20 题 10 分, 第 21、22、26 每题 5 分,第27题7分)解答应写出文字说明、演算步骤或证明过程.

17. 解不等式 $3(x+1)-5x \le 7$,并把解集在数轴上表示出来.

解:
$$3x+3-5x \le 7$$

$$3x - 5x \le 7 - 3$$

$$-2x \le 4$$
 4分

$$x \ge -2$$
 6分

解: 原式 =
$$-4+3-(-2)+(\sqrt{3}-1)=-4+3+2+\sqrt{3}-1=\sqrt{3}$$
 6分

19. 解方程组:
$$\begin{cases} 3x + 4y = 2 \\ 3x - 2y = 8 \\ 2 \end{cases}$$

解: 由①-②得:
$$y = -1$$
 3分

把
$$y = -1$$
代入①中,解得: $x = 2$ 5分

$$\therefore \begin{cases} x = 2 \\ y = -1 \end{cases}$$
 6 %

20. 求下列各式中的
$$x$$
 值: (1) $x^2 - 1 = \frac{5}{4}$

解:
$$x^2 = \frac{9}{4}$$
 2分 $x = \pm \frac{3}{2}$

$$x = \pm \frac{3}{2}$$

(2)
$$3(x-4)^3 = -375$$

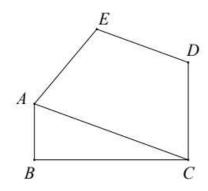
解:
$$(x-4)^3 = -125$$
 1分

$$x-4=-5 3 \Rightarrow x=-1$$

21. 作图题

- (1) 图略 1分
- (2) 图略 2分
- (3) PC > PD, 垂线段最短 2分
- 22. 两直线平行,内错角相等 1分

角平分线的定义 1分


BAE 1分

同位角相等,两直线平行 1分

两直线平行,同旁内角互补 1分

23. (1) 证明: $\therefore AC // DE$, $\therefore \angle D + \angle ACD = 180^{\circ}$, 1分

 \therefore ∠D + ∠BAC = 180°, \therefore ∠ACD = ∠BAC, \therefore AB // CD, 2 \Rightarrow

- (2) 连接 CE
- 3分

∴
$$AC // DE$$
, $\angle CED = 35^{\circ}$, ∴ $\angle ACE = \angle CED = 35^{\circ}$ 4 $\%$

$$\therefore AB // CD$$
, $\therefore \angle BAC = \angle ACD = 70^{\circ}$, $\therefore AB \perp BC$,

∴
$$\angle B = 90^{\circ}$$
, ∴ $\angle BAC + \angle B + \angle ACB = 180^{\circ}$, ∴ $\angle ACB = 20^{\circ}$ 6 分

24. 列方程(组)解决问题

解: 设天头长 6kcm, 地头长 4kcm 1分

由题意得边为 kcm, 100+10k=4(27+2k) 3分

解得k=4 5分

答:边的宽为4cm,天头长为24cm 6分

25. 垂直(或 AB \(\triangle m \) 2 分

垂直 (或 $AB \perp CD$). 2分

C 2分

- 26. (1) 1 1分
- (2) ×, √ 2分
- (3) $11 \le x < 13$ 2分

27. B C N B

解: (1) 证明: $\therefore AM //BN$, $\therefore \angle BAD + \angle ABD = 180^{\circ}$,

$$\therefore$$
 ∠BAD = ∠BCD, \therefore ∠BCD + ∠ABD = 180°, \therefore AB // CD; 2 分

图2

(2) ①解: $\angle AEB$ 与 $\angle ACB$ 之间的数量关系不变, $\angle AEB = 2\angle ACB$.

理由如下: :: AD // BC, $:: \angle DAC = \angle ACB$,

$$\therefore \angle EAC = \angle DAC$$
, $\therefore \angle EAC = \angle ACB$,

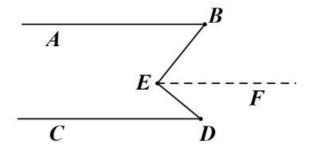
∴
$$\angle AEB = \angle EAC + \angle ACB = 2\angle ACB$$
: 4 \oiint

②证明: $\therefore AD // BC$, $\therefore \angle AFB = \angle DAF$, $\therefore AB // CD$,

$$\therefore \angle ACD = \angle BAC$$
, $\therefore \angle ACD = \angle AFB$,

$$\therefore \angle BAC = \angle DAF$$
, $\Box \angle BAF + \angle EAC = \angle FAC + \angle DAC$,

$$\therefore \angle BAF = \angle DAC$$
, $\therefore \angle DAC = \angle ACB$, $\therefore \angle BAF = \angle ACB$,


四、选做题(共10分,第28题4分,第29题6分)

28. (1) ①②⑤. 2分

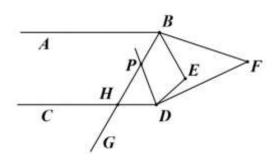
(2)
$$x = -\frac{3}{2}$$
 或 $x = -2$. 4 分

29. (1) 60°; 2分

(2) ①过 E 作 EF // AB, 如图

 $\therefore \angle B = \angle BEF$, $\therefore AB // CD, EF // AB$,

$$\therefore EF // CD$$
, $\therefore \angle D = 60^{\circ}$, $\therefore \angle D = \angle DEF = 60^{\circ}$,


$$\therefore$$
 ∠B+60° = ∠BEF + ∠DEF, \square ∠B+60° = ∠BED,

 $\therefore \angle B \neq \angle BED$ 的 3 系补周角, $\therefore \angle BED = 360^{\circ} - 3\angle B$,

∴
$$\angle B + 60^\circ = 360^\circ - 3\angle B$$
, ∴ $\angle B = 75^\circ$; 4 分

②当 BG 上的动点 P 为 $\angle CDE$ 的角平分线与 BG 的交点时,满足 $\angle BPD$ 是 $\angle F$ 的 k 系补周角,此时 k=2n.

若 $\angle BPD$ 是 $\angle F$ 的 k 系补周角,则 $\angle F + k \angle BPD = 360^{\circ}$

$$\therefore k \angle BPD = 360^{\circ} - \angle F ,$$

又由基本构图知: $\angle ABF + \angle CDF = 360^{\circ} - \angle F$,

$$\therefore k \angle BPD = \angle ABF + \angle CDF ,$$

$$\mathbb{Y} :: \angle ABF = n \angle ABE, \angle CDF = n \angle CDE,$$

$$\therefore k \angle BPD = n \angle ABE + n \angle CDE ,$$

$$\therefore$$
 ∠BPD = ∠PHD + ∠PDH, AB // CD, PG 平分 ∠ABE, PD 平分 ∠CDE

$$\therefore \angle PHD = \angle ABH = \frac{1}{2} \angle ABE, \angle PDH - \frac{1}{2} \angle CDE,$$

$$\frac{1}{2} (\angle ABE + \angle CDE) = n (\angle ABE + \angle CDE)$$

$$\therefore k = 2n$$
. 6分