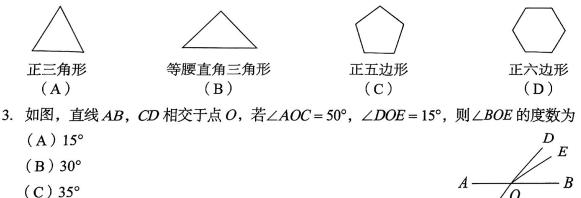


数学试卷

2024.4

学校_	班级	姓名	考号
考 生 须 知	 1.本试卷共6页,共三道大题, 2.在试卷和答题卡上认真填写当 3.试题答案一律填涂或书写在容 4.在答题卡上,选择题、作图题, 5.考试结束,请将本试卷、答题 	学校名称、班级、姓 答题卡上,在试卷上 用2B铅笔作答,其他	名和考号。 作答无效。 b试题用黑色字迹签字笔作答。


一、选择题(共16分,每题2分)

第 1-8 题均有四个选项,其中符合题意的选项只有一个.

1. 2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报 告中提到,2023年北京向天津、河北输出技术合同成交额7487000000元, 将 74 870 000 000 用科学记数法表示应为

(A) 74.87×10^9 (B) 7.487×10^{10} $(D) 0.7487 \times 10^{11}$ $(C) 7.487 \times 10^{9}$

2. 下列图形中, 既是轴对称图形又是中心对称图形的是

(D) 65°

4. 如果一个几何体的三视图都是矩形,那么这个几何体可能是

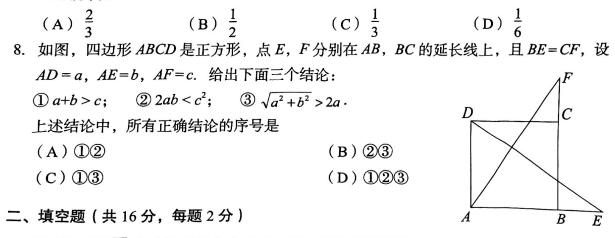
(A) 三棱柱 (B) 长方体 (C)圆柱

5. 若 a < b, 则下列结论正确的是

- $(\mathbf{A}) a < -b$
- (C) 1 a < 1 b
- 6. 正十边形的内角和为
 - (A) 144° (C) 1440° (D) 1800° (B) 360°

九年级数学试卷 第1页(共6页)

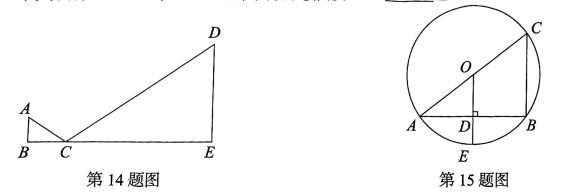
(D)圆锥



(B) 2a < a+b

(D) 2a+1>2b+1

7. 掷一枚质地均匀的骰子, 骰子的六个面上分别刻有1到6的点数, 向上一面的点数为5的概率是



- 9. 若式子 √x-14 在实数范围内有意义,则x的取值范围是____
- 10. 分解因式: 3x²+6xy+3y²=____.
- 11. 方程 $\frac{2}{3x} = \frac{1}{4x-5}$ 的解为_____.
- 若关于 x 的一元二次方程 x²+5x+m=0 有两个不相等的实数根,则实数 m 的取值范 围是_____.
- 13. 某种植户种植了1000棵新品种果树,为了解这1000棵果树的水果产量,随机抽取 了50棵进行统计,获取了它们的水果产量(单位:千克),数据整理如下:

水果产量	x < 50	$50 \leq x < 75$	$75 \leq x < 100$	$100 \leq x < 125$	$x \ge 125$
果树棵数	1	15	20	12	2

根据以上数据,估计这1000棵果树中水果产量不低于75千克的果树棵数为_____.

14. 在数学活动课上,小南利用镜子、尺子等工具测量学校教学楼高度(如图所示),当他 刚好在点C处的镜子中看到教学楼的顶部D时,测得小南的眼睛与地面的距离AB=1.6 m, 同时测得 BC=2.4 m, CE=9.6 m,则教学楼高度 DE = m.

15. 如图, ○O是 Rt△ABC 的外接圆, OE⊥AB 于点 D, 交⊙O 于点 E, 若 AB=8, DE=2,
 则 BC 的长为_____.

九年级数学试卷 第2页(共6页)

E

C

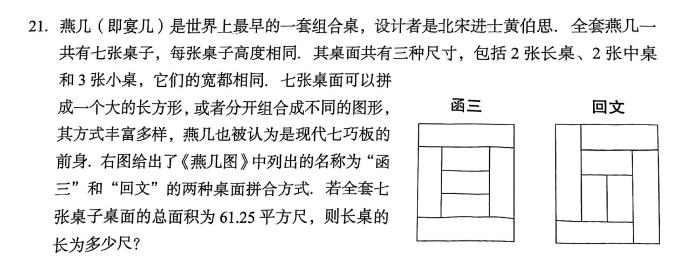
D

16. 甲、乙两位同学合作为班级联欢会制作 A、B、C、D 四个游戏道具,每个道具的制作都需要拼装和上色两道工序,先由甲同学进行拼装,拼装完成后再由乙同学上色. 两位同学完成每个道具各自的工序需要的时间(单位:分钟)如下表所示:

	А	В	С	D
甲	9	5	6	8
Z	7	7	9	3

(1)如果按照 A→B→C→D 的顺序制作,两位同学合作完成这四个道具的总时长 最少为 _____ 分钟;

(2)两位同学想用最短的时间完成这四个道具的制作,他们制作的顺序应该是_____.


三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)
 解答应写出文字说明、演算步骤或证明过程.

17. 计算:
$$\sqrt{8} + \left|1 - \sqrt{2}\right| + (2 - \pi)^{\circ} - 2\sin 45^{\circ}$$
.

18. 解不等式组:
$$\begin{cases} 2x-4 < 3(x-1), \\ x-3 < \frac{x-4}{2}. \end{cases}$$

19. 已知
$$x + 2y + 2 = 0$$
,求代数式 $\left(x - \frac{4y^2}{x}\right) \cdot \frac{2x}{x - 2y}$ 的值.

- 如图,在 ∠¬ABCD 中, AB = AC, 过点 D 作 AC 的平行线与
 BA 的延长线相交于点 E.
 - (1) 求证:四边形 ACDE 是菱形;
 - (2) 连接 CE, 若 AB=5, tanB=2, 求 CE 的长.

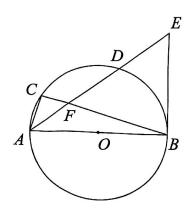
九年级数学试卷 第3页(共6页)

- 22. 在平面直角坐标系 xOy 中,正比例函数 $y = mx(m \neq 0)$ 的图象和反比例函数 $y = \frac{k}{x}(k \neq 0)$ 的图象都经过点 A(2, 4).
 - (1) 求该正比例函数和反比例函数的解析式;
 - (2) 当 x > 3 时,对于 x 的每一个值,函数 $y = mx + n(m \neq 0)$ 的值都大于反比例函数 $y = \frac{k}{x}(k \neq 0)$ 的值,直接写出 n 的取值范围.
- 23. 某广场用月季花树做景观造型,先后种植了两批各 12 棵,测量并获取了所有花树的 高度(单位: cm),数据整理如下:

a. 两批月季花树高度的频数:

	131	135	136	140	144	148	149
第一批	1	3	0	4	2	2	0
第二批	0	1	2	3	5	0	1

b. 两批月季花树高度的平均数、中位数、众数(结果保留整数):


	平均数	中位数	众数
第一批	140	140	п
第二批	141	т	144

(1) 写出表中m, n的值;

(2)在这两批花树中,高度的整齐度更好的是_____(填"第一批"或"第二批");

- (3)根据造型的需要,这两批花树各选用 10 棵,且使它们高度的平均数尽可能接近. 若第二批去掉了高度为 135 cm 和 149 cm 的两棵花树,则第一批去掉的两棵花树的高度分别是_____ cm 和_____ cm.
- 24. 如图, *AB* 是⊙O 的直径, 点 C 在⊙O 上, D 是 *B*C 的中点, *AD* 的延长线与过点 B 的 切线交于点 E, *AD* 与 BC 的交点为 F.
 - (1) 求证: *BE*=*BF*;

(2) 若⊙O的半径是2, BE=3, 求 AF 的长.

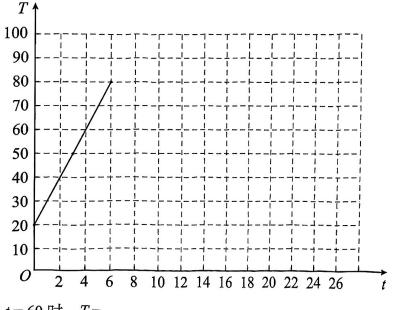
九年级数学试卷 第4页(共6页)

25. 某款电热水壶有两种工作模式:煮沸模式和保温模式,在煮沸模式下将水加热至 100 ℃ 后自动进入保温模式,此时电热水壶开始检测壶中水温,若水温高于 50 ℃,水壶不加热;若水温降至 50 ℃,水壶开始加热,水温达到 100 ℃ 时停止加热……此后一直在保温模式下循环工作.某数学小组对壶中水量 a(单位:L),水温 T(单位: ℃) 与时间 t(单位:分)进行了观测和记录,以下为该小组记录的部分数据.

	x1 //20			, 11 AE 1-1		
а	0.5	1	1.5	2	2.5	3
t	4.5	8	11.5	15	18.5	22

表 1 从 20 ℃ 开始加热至 100 ℃,水量与时间对照表

表 2 1 L 水从 20 ℃ 开始加热,水温与时间对照表

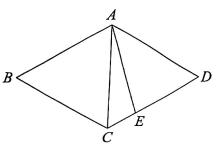

		煮沸模式							保温	模式				
t	0	3	6	m	10	12	14	16	18	20	22	24	26	
T	20	50	80	100	89	80	72	66	60	55	50	55	60	

对以上实验数据进行分析后,该小组发现,水壶中水量为1L时,无论在煮沸模式还 是在保温模式下,只要水壶开始加热,壶中水温T就是加热时间t的一次函数.

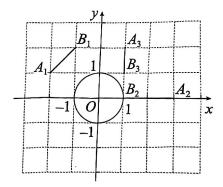
(1) 写出表中 m 的值;

(2) 根据表 2 中的数据,补充完成以下内容:

① 在下图中补全水温与时间的函数图象;



②当*t*=60时,*T*=____;


(3)假设降温过程中,壶中水温与时间的函数关系和水量多少无关.某天小明距离出门仅有 30 分钟,他往水壶中注入 2.5 L 温度为 20 ℃的水,当水加热至 100 ℃后立即关闭电源.出门前,他_____(填"能"或"不能")喝到低于 50 ℃的水.

- 26. 在平面直角坐标系 xOy 中, 抛物线 y = ax² + bx (a > 0) 上有两点 (x₁, y₁), (x₂, y₂), 它 的对称轴为直线 x=t.
 - (1)若该抛物线经过点(4,0),求t的值;
 - (2)当0<x₁<1时,
 ①若t>1,则y₁_____0;(填">""="或"<")
 ②若对于x₁+x₂=2,都有y₁y₂>0,求t的取值范围.
- 27. 如图, 在菱形 ABCD 中, ∠BAD=120°, E 是 CD 边上一点(不与点 C, D 重合).
 将线段 AE 绕点 A 逆时针旋转 60° 得到线段 AF, 连接 DF, 连接 BF 交 AC 于点 G.
 - (1)依据题意,补全图形;
 - (2) 求证: GB=GF;
 - (3)用等式表示线段 BC, CE, BG 之间的数量 关系.

- 28. 在平面直角坐标系 xOy 中, ⊙O 的半径为1,对于直线 l 和线段 PQ,给出如下定义: 若线段 PQ 关于直线 l 的对称图形是⊙O 的弦 P'Q'(P', Q'分别为 P, Q 的对应点), 则称线段 PQ 是⊙O 关于直线 l 的"对称弦"
 - (1)如图,点A₁,A₂,A₃,B₁,B₂,B₃的横、纵坐标都是整数. 线段A₁B₁,A₂B₂,A₃B₃中,
 是⊙O关于直线 y=x + 1 的 "对称弦"的是 _____;
 - (2) CD 是⊙O关于直线 y=kx(k≠0)的"对称弦",若点 C 的坐标为(-1,0), 且 CD=1,求点 D 的坐标;
 - (3) 已知直线 $y = -\frac{\sqrt{3}}{3}x + b$ 和点 $M(3, 2\sqrt{3})$,若线段 MN 是 $\odot O$ 关于直线 $y = -\frac{\sqrt{3}}{3}x + b$ 的 "对称弦",且 MN = 1,直接写出 b 的值.

九年级数学试卷 第6页(共6页)

北京市朝阳区九年级综合练习(一)

数学试卷答案及评分参考

2024.4

一、选择题(共16分,每题2分)

题号	1	2	3	4	5	6	7	8
答案	В	D	C	В	В	С	D	Α

二、填空题(共16分,每题2分)

题号	9	10	11	12
答案	$x \ge 14$	$3(x+y)^2$	<i>x</i> =2	$m < \frac{25}{4}$
题号	13	14	15	16
答案	680	6.4	6	35; $B \rightarrow C \rightarrow A \rightarrow D$

 三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分, 第24题6分,第25题5分,第26题6分,第27-28题,每题7分)

17.	解:	原式 = 2√2 +	$\sqrt{2}-1+1-2\times\frac{\sqrt{2}}{2}$	4分
		$=2\sqrt{2}$.		5分

18. 解:原不等式组为
$$\begin{cases} 2x-4 < 3(x-1), ① \\ x-3 < \frac{x-4}{2}. \end{cases}$$
 ②

解不等式①,	得 x>-1.	 2分
解不等式②,	得 <i>x</i> < 2.	 4分

∴原不等式组的解集为 –1 < x < 2. ……………………………………………………… 5 分

19. 解:
$$(x - \frac{4y^2}{x}) \cdot \frac{2x}{x - 2y}$$

$$= \frac{x^2 - 4y^2}{x} \cdot \frac{2x}{x - 2y} \cdots 1 \%$$

$$= \frac{(x + 2y)(x - 2y)}{x} \cdot \frac{2x}{x - 2y} \cdots 2 \%$$

$$= 2(x + 2y) \cdots 3 \%$$

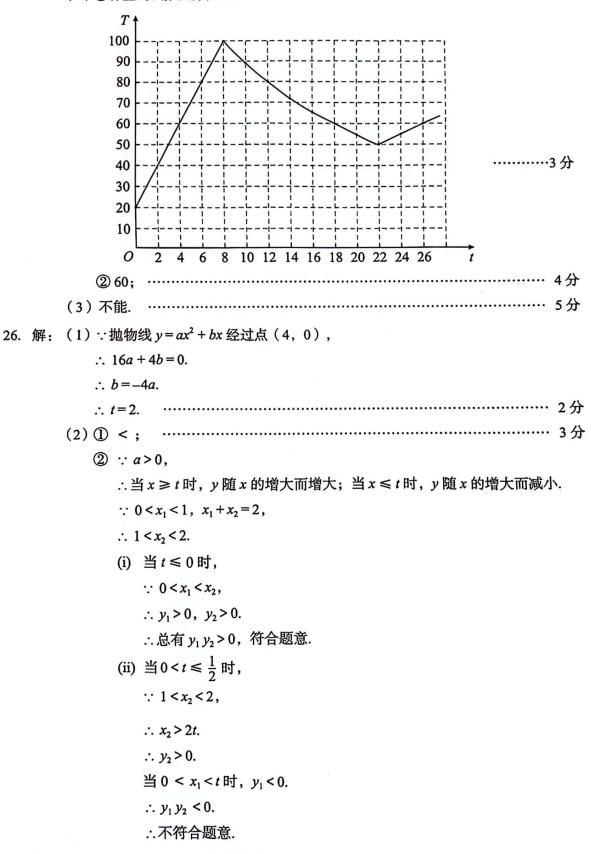
$$\therefore x + 2y + 2 = 0,$$

$$\therefore x + 2y = -2. \cdots 4 \%$$

九年级数学答案及评分参考 第1页(共6页)

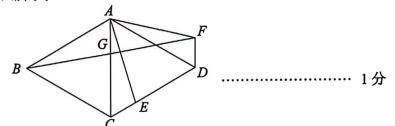
(1)证明: :: 四边形 ABCD 是平行四边形, 20. ∴ *AB*//*CD*, *AB* = *CD*. 1分 $\therefore DE//AC$, :. 四边形 ACDE 是平行四边形. 2分 $\therefore AB=AC,$: AC=CD. ∴四边形 ACDE 是菱形. ······ 3分 (2) 解: 设 CE 与 AD 相交于点 O. 由(1)可知, $AD\perp CE$, AD//BC, AB = CD = AE. Ε $\therefore ∠BCE = ∠AOE = 90^{\circ}$. ·······4 分 ∴ \therefore Rt $\triangle BCE + +, \tan B = \frac{CE}{BC} = 2.$ 0 设BC = x,则CE = 2x. $\therefore AB = 5$, B С $\therefore BE = 2AB = 10.$ $\therefore BC^2 + CE^2 = BE^2,$ $\therefore x^2 + (2x)^2 = 10^2$. 5分 解得 $x_1 = 2\sqrt{5}$, $x_2 = -2\sqrt{5}$ (舍). $\therefore CE = 4\sqrt{5} . \qquad 6 分$ 由图形可知,小桌的长为 2x 尺,中桌的长为 3x 尺,长桌的长为 4x 尺. …… 2 分 解得 $x_1 = \frac{7}{4}, x_2 = -\frac{7}{4}$ (舍). 4分 ------ 5分 $\therefore 4x = 7. \cdots$ 答:长桌的长为7尺. 22. 解: (1) :: y = mx 的图象经过点 A(2, 4), $\therefore m = 2.$ $\therefore v = 2x$. ∵ $y = \frac{k}{x}$ 的图象经过点 A(2, 4), $\therefore k = 8.$ $\therefore y = \frac{8}{r}$. 3分 ------ 5分 $(2) \quad n \ge -\frac{10}{3} \ .$

九年级数学答案及评分参考 第2页(共6页)



23.	解:	(1) m	= 142, 1	$n = 140; \cdots$	•••••	•••••			2分
		(2)第	第二批;		••••••		•••••		3分
		(3)13	31, 135.		•••••				5分
24.	(1)	证明:	∵D是.	\widehat{BC} 的中点,					
			$\therefore \widehat{BD} =$	\widehat{CD} .					
			∴∠BAL	$D = \angle CAD.$			•••••		1分
			∵ <i>AB</i> 是	⊙0的直径	,				
			∴∠C=	90°					2分
			∴∠CAL	$O + \angle AFC =$	90°.				
			∵∠EFE	$B = \angle AFC$,					
			∴∠CAI	$O + \angle EFB =$	90°.				
			∵ <i>BE</i> 是	⊙ 0 的切线	,				
			∴∠ABE						
			∴∠BAL	$D + \angle E = 90^{\circ}$					
			∴∠EFB	$B = \angle E$.					
			$\therefore BE = 1$	BF					3分
	(2)	解:连	接 BD.						
			AB 是⊙	O 的直径,					E
		А	$\angle ADB =$	90°.			-	D	
		<i>:</i> .	$\angle EAB +$	$\angle ABD = 90^{\circ}$			c	- ii	
		÷	$\angle EBD +$	$\angle ABD = 90^{\circ}$			F		
		··.	$\angle EAB = $	∠EBD.				0	B
		÷	⊙0的半	径是2,					
			<i>AB</i> = 4.						
		\cdot	BE=3,						
			在 Rt △A	BE中,AE=	$=\sqrt{AB^2+BE^2}$	=5		4	分
		.:.	sin∠ <i>EBL</i>	$= \sin \angle EAB$	$=\frac{BE}{AE}=\frac{3}{5}$.				
		·· .	ED = BE	$sin \angle EBD =$	$\frac{9}{5}$			5	分
		\cdot	BE = BF,	$BD \perp EF$,	•				
			EF = 2EL	$b = \frac{18}{5}$.					
								6	分
		1		5					
				几年级奴子台	术 风川 月 多 考	第3页(共6页	()		

25. 解: (1)8; 1分


(2) ①补全的函数图象如下:

九年级数学答案及评分参考 第4页(共6页)

(iii) 当 $t > \frac{1}{2}$ 时, $\therefore 0 < x_1 < 1$, $\therefore y_1 < 0$. 要使 $y_1 y_2 > 0$, 只需 $y_2 < 0$. $\therefore (0, 0)$ 关于x = t的对称点为(2t, 0), $\therefore x_2 < 2t$. $\therefore 2t \ge 2$. $\therefore t \ge 1$.

(2)证明: 连接 BD, 与 AC 相交于点 O.

:: 线段 AE 绕点 A 逆时针旋转 60° 得到线段 AF,

 $\therefore \angle EAF = 60^{\circ}, AE = AF,$ ∵在菱形 ABCD 中, ∠BAD=120°, AD=CD, $\therefore \angle CAD = \frac{1}{2} \angle BAD = 60^{\circ}.$ G ∴ △ACD 是等边三角形. 0 $\therefore AC = AD.$ $\therefore \angle ADF = \angle ACD = 60^{\circ}$. $\therefore \angle ADF = \angle CAD.$ $\therefore \ \frac{BG}{GF} = \frac{BO}{OD}.$:: BO = OD, (3) $3BC^2 + CE^2 = 4BG^2$. 7分

九年级数学答案及评分参考 第5页(共6页)

28. 解:	(1) A_1B_1 ;
	(2) 设点 C, D 关于直线 $y = kx(k \neq 0)$ 的对称点为 C', D',
	∴直线 y=kx(k≠0)垂直平分 CC', DD'.
	$\therefore CD$ 是 $\odot O$ 关于直线 $y = kx(k \neq 0)$ 的 "对称弦",
	∴ C', D'在⊙O上.
	∵直线 $y = kx(k \neq 0)$ 经过圆心 O ,
	∴点D在⊙0上
	$\therefore CD = 1,$
	∴ △ OCD 是等边三角形.
	可求点 D 的坐标为 $\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ 或 $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
	(3) $\frac{5\sqrt{3}}{3}$ 或 $\frac{4\sqrt{3}}{3}$