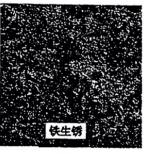
北师大附属实验中学 2023-2024 学年度第二学期开学摸底 高三年级化学

班级 姓名

考 生 须

知

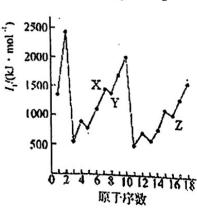
- 1. 本试卷共 10 页, 共 19 题; 答题纸共 2 页。满分 100 分。考试时间 90 分钟。
- 2. 在试卷和答题卡上准确填写班级、姓名、学号。
- 3. 试卷答案一律填写在答题卡上,在试卷上作答无效。
- 4. 在答题卡上, 选择题须用 2B 铅笔将选中项涂黑涂满, 其他试题用黑色字迹签 字笔作答。


可能用到的相对原子质量: H1 C 12 O 16 Se 79 Na 23 S 32 Ca 40

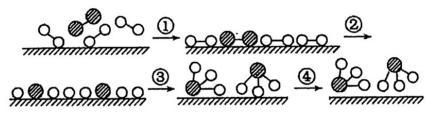
第一部分

本部分共14题,每题3分,共42分。在每题列出的四个选项中,选出最符合题目 要求的一项。

1. 下列转化过程主要涉及非氧化还原反应的是


- B
- 2. 下列化学用语或图示表达不正确的是
 - A. 基态 Cr 的价层电子排布式: 3d⁵4s¹
 - C. 乙烷的空间填充模型:

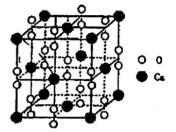
- B. 乙醛的分子式: CH3CHO
- D. CO; 的空间结构模

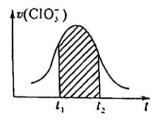

- 3. 已知部分元素的第一电离能如右图。有关元素 X、Y、Z 的叙述不正确的是
 - A. 电负性: X>Z>Y
 - B. Y与Z形成的常见化合物的晶体属于分子晶体
 - C. X与Y可按原子个数比2:1和1:1等形成化合物
 - D. Z 的气态氢化物具有还原性

4. 绿原酸的结构简式如图,下列有关绿原酸的说法不正确的是

- A. 分子式为 C16H18O9
- B. 能与 Na₂CO₃反应
- C. 能发生取代反应和消去反应
- D. 0.1 mol 绿原酸最多与 0.8 mol NaOH 反应
- 6. 下列方程式与所给事实不相符的是
 - A. SO_2 与 $FeCl_3$ 溶液反应,溶液由黄色变成浅绿色: $SO_2 + 2Fe^{3+} + 2H_2O = SO_4^{2-} + 2Fe^{2+} + 4H^+$
 - B. 工业上用 CO₂和 NH₃合成尿素: 2NH₃+CO₂ CO(NH₂)₂+H₂O
 - C. 向 ZnS 浊液中滴加 CuSO₄ 溶液, 白色浑浊变为黑色:
 ZnS(s) + Cu²+(aq) ⇒ CuS(s) + Zn²+(aq)
 - D. 向(NH₄)₂SO₄ 溶液中滴加 Ba(OH)₂ 溶液: NH₄⁺+ SO₄²⁻+ Ba²⁺+ OH⁻ = NH₃·H₂O + BaSO₄↓
 - 6. 化学家格哈德·埃特尔证实了氢气与氮气在固体催化剂表面合成氨的反应过程,示意 图如下:

下列关于合成氨反应的叙述中不正确的是


- A. 常温下该反应难以进行,是因为常温下生成物的化学键难以形成
- B. 该过程表明,在化学反应中存在化学键的断裂与形成
- C、在催化剂的作用下,反应物的化学键变得容易断裂
- D. 过程②需吸收能量,过程③则放出能量
- 7 下列有关化学实验的叙述中,不正确的是
 - A. 制备乙酸乙酯时,为除去乙酸乙酯中的乙酸,用氢氧化钠溶液收集产物
 - B. 重结晶法提纯苯甲酸时, 为除去杂质和防止苯甲酸析出, 应该趁热过滤
 - C. 用饱和食盐水替代水跟电石作用,可以有效控制产生乙炔的速率
 - D. 实验室制取乙烯并验证其性质时,先将产生的气体通入到 NaOH 溶液中除去杂质


8. 将 0.2 mol·L⁻¹ 的 KI 溶液和 0.05 mol·L⁻¹ Fe₂(SO₄)₃ 溶液等体积混合后,取混合液分别 完成下列实验,能说明溶液中存在化学平衡"2Fe³++2I⁻ ⇒ 2Fe²++I₂"的是

实验编号	实验操作	实验现象
1	滴入 KSCN 溶液	溶液变红色
2	滴入 AgNO₃溶液	有黄色沉淀生成
3	滴入 K ₃ [Fe(CN) ₆]溶液	有蓝色沉淀生成
4	滴入淀粉溶液	溶液变蓝色

- A. ①和② B. ②和④
- C 3和4
- D. ①和③
- 9. 过氧化钙晶体的晶胞结构如下图所示, 已知该晶胞的密度是 ρg·cm⁻³。(N_A表示阿伏伽德罗常数)。下列表述不正确的是
 - A. 基态 Ca²⁺的电子排布式: 1s²2s²2p⁶3s²3p⁶
 - B. 过氧化钙电子式: Ca²⁺[:0:0:]²⁻
 - C. 晶体中 Ca2+紧邻 6 个 O₂2-
 - D. 晶胞结构中最近的两个 Ca^{2+} 间的距离为: $\frac{\sqrt{2}}{2} \times \sqrt[3]{\frac{72\times4}{\rho N_A}}$ nm

- 10. 氯酸钾和亚硫酸氢钾溶液能发生氧化还原反应: ClO3-43HSO3-=3SO42-+Cl-+3H+。 己知该反应的速率随 $c(H^+)$ 的增大而加快。右图为用 ClO_3 -在单位时间内物质的量浓 度变化表示的该反应 v-t 图。下列说法中不正确的是
 - A. 反应开始时速率增大可能是 $c(H^+)$ 所致
 - B. 纵坐标为 ν(Cl⁻)的 ν-t 曲线与图中曲线完全重合
 - C. 图中阴影部分的面积表示 ti~tz时间内 ClO3-的物质的量 的减少量
 - D. 后期反应速率下降的主要原因是反应物浓度减少

11. 己知相关数据如下:

物质	HF	H ₂ CO ₃	CaF ₂	CaCO ₃
相关数据	$K_a = 6.8 \times 10^{-4}$	$K_{a1} = 4.5 \times 10^{-7}$	$K_{\rm sp} = 3.5 \times 10^{-11}$	$K_{\rm sp} = 3.4 \times 10^{-9}$
		$K_{a2} = 4.7 \times 10^{-11}$		

下列说法正确的是

- A. 氟化钠溶液中存在五种微粒
- B. 氢氟酸滴入碳酸钠溶液中,可能不产生气体
- C. 氢氧化钙溶液与氢氟酸混合的离子方程式: $2OH^- + Ca^{2+} + 2H^+ + 2F^- = CaF_2 \downarrow + 2H_2O$
- D. 向氟化钙悬浊液中通入 CO_2 能够发生反应: $CaF_2 + CO_2 + H_2O = CaCO_3 + 2HF$

12. 某学生小组进行了如下实验

	实验1	实验 2	实验 3
操作	滴加 0.001 mol/L Na ₂ CO ₃ 溶液 ——4 mL 0.05mol/L CaCl ₂ 溶液	滴加 0.5 mol/L NaHCO₃溶液 ———4 mL 饱和 CaCl₂溶液	滴加 0.5 mol/L CaCl ₂ 溶液 — 4 mL 饱和 Na ₂ CO ₂ 溶液
现象	无沉淀及气体产生	有沉淀及气体产生	现象X

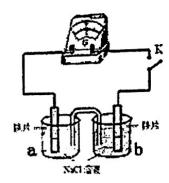
下列说法不正确的是

- A. 实验1混合后的溶液中存在水解平衡和电离平衡
- B、实验 2 中 Ca²⁺促进了 HCO₃-的水解平衡
- C. 实验 3 中现象 X: 可能是有沉淀及气体产生
- D. 无法用 0.05 mol/L CaCl₂ 溶液鉴别浓度均为 0.001 mol/L 的 Na₂CO₃ 溶液和 NaHCO₃ 溶液
- 13. 高分子 M 可通过如下反应改性为具有更高强度的高分子 N。

N

下列说法不正确的是

- B. N的结构中含有2种官能团
- C. 由 M 合成 N 的反应类型为加成反应
- D. M、N都可以发生水解反应



14. 某研究小组用下图装置探究 NaCl 溶液对钢铁腐蚀的影响。 实验I: 向烧杯 a、b 中各加入 30 mL 3.5%的 NaCl 溶液, 闭合

K,指针未发生偏转。加热烧杯 a,指针向右偏转。

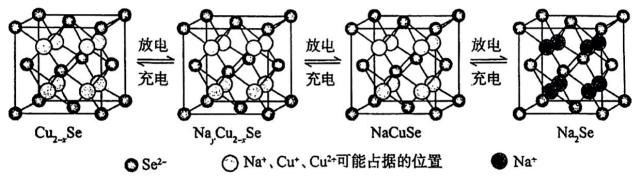
取 a、b 中溶液少量,滴加 K_3 [Fe(CN) $_6$]溶液,a 中出现蓝色沉淀,b 中无变化。改变 NaCl 溶液的浓度继续实验,记录如下:

实验	a	ь	指针偏转方向		
Ш	0.1%	0.01%	向右		
ш	0.1%	3.5%	向左		
IV	3.5%	饱和溶液	向右		

查阅资料: 在饱和 NaCl 溶液中 O2 浓度较低, 钢铁不易被腐蚀。 下列说法不正确的是:

- A. 实验I加热后,指针发生偏转的原因可能是温度升高,Fe 还原性增强,反应速率加快
- B、实验Ⅱ中 b 作正极
- C. 甲同学由实验II、III、IV得出结论 NaCl 溶液的浓度越大, Fe 越容易被腐蚀
- D. 根据上述实验,对钢铁腐蚀有影响的因素是:温度、NaCl 溶液的浓度、O2的浓度

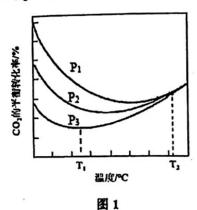
第二部分

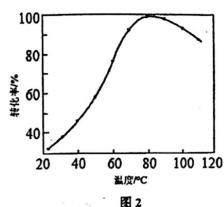

本部分共5题,共58分。

- 15. (10 分) 硒 (Se) 是一种非金属元素。可用作光敏材料、电解锰行业催化剂、动物体 必需的营养元素和植物有益的营养元素等。请回答下列问题:
- (1) 基态 Se 原子的价层电子轨道表示式为____。
- (2) 比较键角大小: 气态 SeO₃分子_____SeO₃²⁻离子(填 ">" "<" 或 "="),原因是
- (3) 人体代谢甲硒醇(CH₃SeH)后可增加抗癌活性,下表中有机物沸点不同的原因是

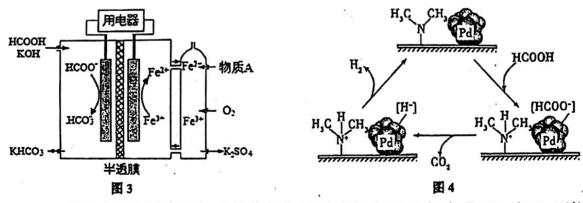
有机物	甲醇	甲硫醇(CH ₃ SH)	甲硒醇
沸点/℃	64.7	5.95	25.05

(4) Cu₂→Se 是一种钠离子电池正极材料,充放电过程中正极材料立方晶胞(示意图)的组成变化如图所示,晶胞内未标出因放电产生的0价Cu原子。




- ① 下列说法正确的是
 - a. 每个 Cu2-xSe 晶胞中 Cu2+个数为 x
 - b. 每个 Na₂Se 晶胞完全转化为 Cu_{2-x}Se 晶胞,转移电子数为 8
 - c. 每个 NaCuSe 晶胞中 0 价 Cu 原子个数为 1-x
 - d. 当 Na_yCu_{2-x}Se 转化为 NaCuSe 时,每转移(1-y)mol 电子,产生(1-x)mol Cu 原子
- ② 设阿伏伽德罗常数的值为 N_A , Na_2Se 晶胞参数为 a nm, Na_2Se 晶体的密度为 g/cm^3 (用含 a、 N_A 的代数式表示,不考虑晶胞中的 0 价 Cu 原子)。
- (5) 电解铜的阳极泥中含有硒元素(以 Se 单质和 Na₂Se 的形式存在)。称取 5.000 g 电解铜阳极泥样品,以合适方法溶解,将硒元素转化为 H_2SeO_3 ,配成 250.0 mL 混酸溶液。移取上述溶液 25.00 mL 于锥形瓶中,加入 25.00 mL 0.01000 mol/L KMnO₄标准溶液,将 H_2SeO_3 氧化为 H_2SeO_4 。反应完全后,用 0.05000 mol/L (NH₄)₂Fe(SO₄)₂标准溶液滴至终点,消耗(NH₄)₂Fe(SO₄)₂ 标准溶液 15.00 mL。则电解铜阳极泥样品中 Se 的质量分数为

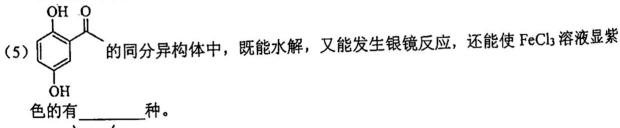
- 16. (11 分) CO₂/HCOOH 循环在氢能的贮存/释放、燃料电池等方面具有重要应用。
- (1) CO_2 直接加氢。将 $n(CO_2): n(H_2)=1:4$ 的混合气体充入某密闭容器中,在一定温度下,同时自发发生反应 1 和反应 2。


已知:反应 1 $CO_2(g) + H_2(g) \Longrightarrow CO(g) + H_2O(g)$ $\Delta H_1 > 0$ 反应 2 $CO_2(g) + H_2(g) \Longrightarrow HCOOH(g)$ ΔH_2

- ① ΔH2_____0 (填">""<")。
- ② 不同压强下,实验测定 CO_2 的平衡转化率随温度的变化关系如图 1 所示。已知 P_1 $>P_2>P_3$, P_3 时在 T_1 C 之后 CO_2 的转化率随温度升高而增大的原因是_____。

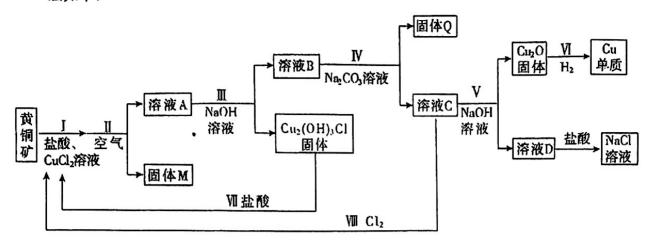
- (2) CO₂催化加氢。在密闭容器中,向含有催化剂的 KHCO₃溶液 (CO₂与 KOH 溶液反应制得)中通入 H₂生成 HCOO⁻,其离子方程式为_____; 其他条件不变,HCO₃⁻转化为 HCOO⁻的转化率随温度的变化关系如图 2 所示。反应温度在 40℃~80℃范围内,HCO₃⁻催化加氢的转化率迅速上升的可能原因是_____。
- (3) HCOOH 燃料电池。研究 HCOOH 燃料电池性能的装置如图 3 所示,两电极间用允许 K⁺、H⁺通过的半透膜隔开。
 - ① 结合电极反应式解释电池放电过程中生成 KHCO3 的原因。
 - ② 放电过程中需补充的物质 A 为_____(填化学式); 用化学用语解释装置中 Fe³⁺ 再生的原因 ____。
 - ③ 该燃料电池放电的本质是 HCOOH 与 O₂ 的反应, 离子方程式为_____。

(4) HCOOH 催化分解制备氢气。在催化剂作用下,HCOOH 分解生成 CO₂和 H₂可能的 反应机理如图 4 所示。研究发现: 其他条件不变时,以 HCOOK 溶液代替 HCOOH 催化释氢的效果更佳,其具体优点是提高释放氢气的速率和 。


17. (12分) 已知间苯二酚可以合成中草药的活性成分 Psoralidin (化合物 P), 合成路线如下:

$$C_2H_5OH$$
 E CH_3O OCH_3 F $-定条件$ OCH_3 O

已知: i.
$$R_1Br \xrightarrow{Mg} R_1MgBr \xrightarrow{R_2Br} R_1 - R_2$$
;
ii. $R_1COOR_2 + R_3OH \xrightarrow{H^+} R_1COOR_3 + R_2OH$


- (1) A 中含氧官能团的名称为____。
- (2) C 的结构简式为____。
- (3) D→E 的方程式为____。
- (4) 下列关于物质 F 的说法正确的是____。
 - A. 分子中有 1 个手性碳原子
- B. 存在顺反异构体
- C. 碳原子的杂化方式有2种
- D. 1 mol F 最多能与 7 mol H₂ 发生加成反应

(7) $G \rightarrow H$ 的过程中分为三步反应。写出 $K \setminus M \setminus H$ 的结构简式。

第8页(共10页)

18. (12 分) 工业用黄铜矿(主要成分 CuFeS₂, 含少量锌、铅的硫化物) 冶炼铜的一种方法如下:

- (1) I中发生下列反应。
 - i. $CuFeS_2 + 3Cu^{2+} + 4Cl^{-} = 4CuCl + Fe^{2+} + 2S$
 - ii. CuCl + Cl - CuCl₂
 - I 中盐酸的作用是。
- (2) Ⅱ中通入空气,将 Fe²⁺转化为 FeOOH 沉淀。
 - ① Fe²⁺转化为 FeOOH 的离子方程式是。
 - ② 溶液 A 中含金属元素的离子有: Zn²+、Pb²+和____。
- (3) Ⅲ中需控制 NaOH 溶液的用量,其原因是____。
- (4) IV中加入 Na₂CO₃ 溶液的目的是_____。
- (5) V 中反应的离子方程式是____。

19. (12 分)以 Na₂S₂O₃溶液和不同金属的盐溶液作为实验对象,探究 Na₂S₂O₃的性质和盐溶液间反应的多样性。

实验		试剂	现象		
	试管	滴管:逐滴滴加,总 体积 V=2mL			
7	2mL 0.1 mol·L ⁻¹ Na ₂ S ₂ O ₃ 溶液 (pH=7)	实验 a: 0.1 mol·L ⁻¹ CuSO4 溶液	溶液先变为绿色,静止后缓慢变浅,最终变为浅绿色		
2mL		实验 b: 0.1 mol·L ⁻¹ CuCl ₂ 溶液	溶液先变为绿色, 缓慢产生白色浑浊, 充分反应后绿色比实验 a 更浅		
		实验 c: 0.1 mol·L ⁻¹ AgNO3 溶液	生成白色沉淀,振荡后迅速溶解,得到无色消液;超过 1.0 mL后,产生少量白色沉淀,立即变为棕黄色,最终变为黑色,静置充分反应后,过滤得到黑色沉淀 A 和滤液 B		

【查阅资料】

1. S₂O₃²能与多种不同金属离子形成沉淀或配合物:

$$Cu^{2+} + 2S_2O_3^{2-} \Longrightarrow [Cu(S_2O_3)_2]^{2-}$$
 (绿色), $Cu^{+} + 2S_2O_3^{2-} \Longrightarrow [Cu(S_2O_3)_2]^{3-}$ (无色)
 $2Ag^{+} + S_2O_3^{2-} \Longrightarrow Ag_2S_2O_3$ (白色沉淀), $Ag_2S_2O_3 + 3S_2O_3^{2-} \Longrightarrow 2 [Ag(S_2O_3)_2]^{3-}$ (无色)

2. S₂O₃²-易被氧化为 S₄O₆²-或者 SO₄²-

【进行实验】

- I. 探究 CuCl2、CuSO4和 Na₂S₂O₃溶液之间的反应
 - (1) 经检验, 实验 a 绿色变浅后的溶液中含 S4O62, 这说明 Na2S2O3具有_____(填"氧化"或"还原") 性。
- (2) 从反应速率和化学平衡两个角度解释实验 a 的实验现象____。
- II. 探究 AgNO3和 Na2S2O3 溶液之间的反应
- (3) 实验 c 中产生的白色沉淀为 Ag2S2O3,用化学用语解释"超过 1.0 mL 后,产生少量白色沉淀"的原因: _____。
- (4) 为了探究实验 c 中产生黑色沉淀的原因, 甲同学进行了进一步的实验:
 - i. 取少量滤液 B, 用广泛 pH 试纸测定 pH = 1;
- ii. 另取少量滤液 B 于试管中, (填操作和现象), 说明滤液中有 SO42-

由上述实验现象,进而推测出黑色沉淀 A 可能为 Ag2S、Ag、S 或它们的混合物。运用氧化还原反应规律,做出该推测的理由是_____。

【获得结论】

(5) 根据上述实验,Na₂S₂O₃和金属盐溶液之间反应的多样性与多种因素有关: ①_____: ②金属盐中的阴离子是否能够参与反应; ③反应时间的长短; ④_____。

2023-2024 学年度第二学期高三化学开学摸底参考答案

-	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	С	В	Α	D	D	Α	Α	D	D	С	В	C	В	C

15. (10分)

$$(1) \begin{array}{c|cccc} 4s & 4p & & \\ \hline \uparrow \downarrow & \uparrow \downarrow & \uparrow & \uparrow & \\ \hline \end{array}$$
 (1分)

- (2) > (1分) SeO₃与 SeO₃²中心原子杂化方式分别为 sp^2 和 sp^3 ,二者空间构型 分别为平面三角形和三角锥形,故键角分别约为 120° 和 107° 。(2分)
- (3) 三者均为分子晶体,相对分子质量越大,分子间作用力越强,沸点越高;甲醇分子间存在氢键,故沸点最高。(2分)
- (4) ① bd (2分)

②
$$\frac{(46+79)\times 4}{\left(a\times 10^{-7}\right)^3\times N_A} \quad (1 \ \%)$$

(5) 3.95% (1分)

16. (11分)

- (1) ① < (1分)
 - ② T₁℃之后,温度升高,反应 1 化学平衡向正反应方向移动的程度大于反应 2 向逆反应方向移动的程度(2分)
- (2) HCO₃⁻+ H₂ HCOO⁻+ H₂O (1分) 温度升高,反应速率增大;温度升高,催化剂的活性增强,反应速率增大(1分)
- (3) ① 电池放电时,负极的电极反应式为 $HCOO^- 2e^- + 2OH^- = HCO_3^- + H_2O$,同时,每转移 2 mol 电子,则有 2 mol K^+ 经半透膜从负极区迁入正极区,负极生成的 HCO_3^- 和剩余的 K^+ 组成 $KHCO_3$ (2 分)
 - ② H_2SO_4 (1分) $O_2 + 4Fe^{2+} + 4H^+ = 4Fe^{3+} + 2H_2O$ (1分)
 - ③ $2HCOOH + 2OH^- + O_2 = 2HCO_3^- + 2H_2O$ (或 $2HCOO^- + O_2 = 2HCO_3^-$)(1分)
- (4) 提高氢气的纯度(1分)

17. (12分)

(1) 酚羟基 (1分)

- (4) AC (2分)
- (5) 13(1分)
- (6) 丙烯(1分)
- (7)(3分)

18. (12分)

- (1) 增大 $c(Cl^-)$,促进 I 中反应,提高铜元素浸出率(1分)
- (2) ① $4Fe^{2+} + O_2 + 6H_2O = 4FeOOH \downarrow + 8H^+$ (2 分) ② Cu^{2+} 、 $CuCl_2^-$ (2 分)
- (3) 防止 Zn²⁺、Pb²⁺沉淀,同时避免 CuCl₂-变成 Cu₂O 沉淀 (2分)
- (4) 除去 Zn²⁺和 Pb²⁺ (1分)
- (5) $2CuCl_2^- + 2OH^- = Cu_2O_1 + 4Cl^- + H_2O$ (2分)
- (6) 电解氯化钠溶液产生 H_2 、 Cl_2 和 NaOH,NaOH 可用于III、V中作沉淀剂, H_2 可用于 VI作还原剂, Cl_2 可用于VIII作氧化剂(2分)

19. (13分)

- (1) 还原(1分)
- (2) 生成[Cu(S₂O₃)₂]²·绿色配合物的反应速率比发生氧化还原反应的速率快,因此"先变为绿色": (1分) Cu^{2+} 和 S₂O₃²⁻发生氧化还原反应, $c(Cu^{2+})$ 下降,使 $Cu^{2+}+2S_2O_3^{2-}$ [Cu(S₂O₃)₂]²⁻平衡逆向移动,[Cu(S₂O₃)₂]²⁻的 浓度下降,因此溶液"最终变为浅绿色": (3个点全,得1分)
- (3) $[Ag(S_2O_3)_2]^{3} + 3Ag^{+} = 2Ag_2S_2O_31$
- (4) 加入足量盐酸,过滤,取清液加入BaCl₂溶液,产生白色沉淀
 - ③Ag₂S₂O₃反应时,只有+2 价硫元素或+1 价银元素发生氧化还原反应时。化合价升高,生成的 SO₄²为氧化产物 (1分),则化合价降低,生成产生 Ag₂S、Ag、S 作为还原产物是合理的 (1分)
 - (5) 金属盐中阳离子的种类(或氧化性强弱) ,反应物的相对用量(或浓度)