试卷编号: 9972

北京一零一中 2023-2024 学年度第二学期高三数学统考四

姓名:

	班级:	学号:	姓名:	成绩:	_
-,	选择题共 10 小是	题。在每小题列出的四	四个选项中,选出符	合题目要求的一项。	
1				则实数 a 的取值范围是	是()
	(A) $\{a \mid -1 \le a\}$ (C) $\{a \mid -1 < a \le a\}$		(B) $\{a \mid -1 < (D) \{a \mid -1 \le a \}$	$\{a < 1\}$ $\{a \le 1 \perp a \ne 0\}$	
2	. 己知 i 是虚数单	\dot{z} 位, 若 $z = \frac{\mathbf{i} + a}{1 + \mathbf{i}}$ 为纯	[虚数, 则实数 a = ()	
	(A) 1	(B) -1	(C) 2	(D) -2	
3	2	的展开式中,第4项	和第5项的二项式	系数相等,则展开式中	x ⁵ 的系数
	为 () (A) $\frac{35}{8}$	(B) $-\frac{35}{8}$	(C) $\frac{9}{2}$	(D) $-\frac{9}{2}$	
4	MH 产 7	$+ x, g(x) = \log_2 x + x,$	$h(x) = \sqrt{x} + x \text{ in } \mathbb{R}$	点分别为 $a, b, c, 则 a, b$	<i>b</i> , <i>c</i> 的大小
	(A) a > b > c	(B) $b > a > c$	(C) $b > c > a$	a (D) c > a > b	<i>'</i> >
5	. 已知向量 <i>BA</i> =	$(\frac{1}{2}, \frac{\sqrt{3}}{2}), \overrightarrow{BC} = (\frac{\sqrt{3}}{2})$	-, <u>1</u>), 则点 <i>A</i> 到直线	BC 的距离为()
	(A) $\frac{1}{2}$	(B) 1	(C) $\sqrt{3}$	(D) $\frac{\sqrt{3}}{2}$	
6	. 设 α, β 是三角开	形的两个内角,下列结	论中正确的是()	
	(A) 若 $\alpha + \beta < -$	$\frac{\pi}{2}$, $\mathbb{M} \sin \alpha + \sin \beta < 1$	$\sqrt{2}$ (B) 若 $\alpha + \beta$	$<\frac{\pi}{2}$, $\mathbb{N} \cos \alpha + \cos \beta$	$<\sqrt{2}$
	(C) 若 $\alpha + \beta > \frac{1}{2}$	$\frac{\pi}{2}$, $\mathbb{M} \sin \alpha + \sin \beta > 1$	(D) 若 $\alpha + \beta$	$> \frac{\pi}{2}, \mathbb{M} \cos \alpha + \cos \beta$	> 1
7	. 己知直线 <i>l</i> : y =	= <i>mx</i> - <i>m</i> - 1, <i>P</i> 为圆 <i>C</i>	$C: x^2 + y^2 - 4x - 2y +$	1 = 0 上一动点, 设 P	到直线 1 距
	离的最大值为 6	d(m), 当 $d(m)$ 最大时,	<i>m</i> 的值为()		
	$(A) - \frac{1}{2}$	(B) $-\frac{3}{2}$	(C) $\frac{2}{3}$	(D) 2	

 $a_{n+3} > a_n$ " 的 ()

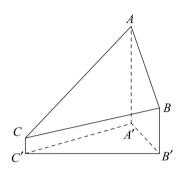
8. 已知 $\{a_n\}$ 是无穷等比数列,则"存在 $n \in \mathbb{N}^*$, 使得 $a_{n+2} > a_{n+1} > a_n$ "是"对任意 $n \in \mathbb{N}^*$,均有

(A) 充分而不必要条件

(B) 必要而不充分条件

(C) 充分必要条件

- (D) 既不充分也不必要条件
- 9. 2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰 最新高程为 8848.86 (单位: m), 三角高程测量法是珠穆 高峰测量法之一, 右图是三角高程测量法的一个示意图, 现有 A, B, C 三点, 且 A, B, C 在同一水平面上的投影 A', B', C' 满足 $\angle A'C'B' = 45^{\circ}$, $\angle A'B'C' = 60^{\circ}$, 由 C 点测得 B点的仰角为 15° , BB' 与 CC' 的差为 100, 由 B 点测得 A点的仰角为 45°, 则 A, C 两点到水平面 A'B'C' 的高度差 AA' - CC' 约为 ($\sqrt{3} \approx 1.732$) (

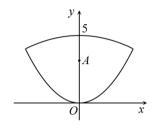


(A) 346

(B) 373

(D) 473

10. 已知抛物线 $y = \frac{1}{4}x^2$ 和 $y = -\frac{1}{16}x^2 + 5$ 所围成的封闭曲 线如图所示, 已知点 A(0,a), 若在此封闭曲线上至少存在 两对不同的点,满足每一对点关于点A对称,则实数a的 取值范围是(



(A)(1,4]

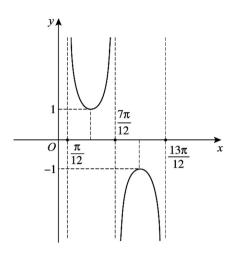
(B) $\left[\frac{5}{2}, 4\right)$ (C) $\left[\frac{5}{2}, 3\right)$

(D)(2,3]

二、填空题共5小题。

- 11. 已知角 α 的终边经过点 (-4, 3), 则 $\cos(\frac{3\pi}{2} \alpha)$ 的值是 ______.
- 12. 已知双曲线 $\frac{x^2}{m} + \frac{y^2}{3} = 1$ 的离心率为 2, 则实数 m =_____.

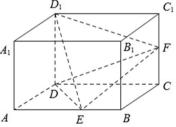
13. 已知函数 $f(x) = \sin(\omega x + \varphi)$ ($\omega > 0, |\varphi| < <math>\frac{\pi}{2}$), 若 $g(x) \cdot f(x) = 1$, 且函数 g(x) 的部分图象如图所示, 则 φ 等于 .



- 14. 设函数 $f(x) = \begin{cases} x^3 3x, & x \leq a, \\ -x, & x > a. \end{cases}$
 - (1) 若 a = 0, 则 f(x) 的最大值为 ;
 - (2) 若 f(x) 无最大值, 则实数 a 的取值范围是
- 15. 如图, 在长方体 ABCD A₁B₁C₁D₁ 中, AB = 2, AA₁ = AD = 1, 动点 E, F 分别在线段 AB 和 CC_1 上. 给出下列 四个结论:

- ①四面体 D_1DEF 的体积为 $\frac{1}{2}$;
- ② △D1EF 可能是等边三角形;
- ③当 $D_1E \perp DF$ 时, $D_1F \leqslant EF$;
- ④有且仅有两组 E, F, 使得三棱锥 $D_1 DEF$ 的四个面均 为直角三角形.

其中所有正确结论的序号是 .



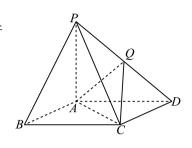
- 三、解答题共6小题。解答应写出文字说明、演算步骤或证明过程。
 - 16. 已知函数 $f(x) = \cos(2x \frac{\pi}{3}) + 2\sin(x \frac{\pi}{4})\sin(x + \frac{\pi}{4})$.
 - (1) 求函数 f(x) 的最小正周期和图象的对称轴方程;
 - (2) 求函数 f(x) 在区间 $\left[-\frac{\pi}{12}, \frac{\pi}{2}\right]$ 上的最值.
 - 17. 如图, 在四棱锥 P ABCD 中, 底面 ABCD 是边长为 1 的正方形, O 为棱 PD 的中点.

- (1) 求证: PB // 平面 ACQ;
- (2) 若 $BA \perp PD$, 再从条件①、条件②、条件③中选择若干个作为已知, 使四棱锥 P ABCD 唯一确定, 并求:
- (i) 直线 PC 与平面 ACQ 所成角的正弦值
- (ii) 点 P 到平面 ACQ 的距离.

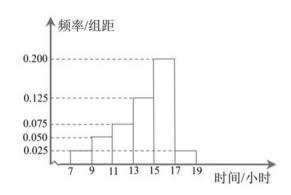
条件①: 二面角 P-CD-A 的大小为 45°;

条件②: $PD = \sqrt{2}$

条件③: AO ⊥ PC.



18. "双减" 政策执行以来,中学生有更多的时间参加志愿服务和体育锻炼等课后活动.某校为了解学生课后活动的情况,从全校学生中随机选取 100 人,统计了他们一周参加课后活动的时间(单位:小时),分别位于区间[7,9),[9,11),[11,13),[13,15),[15,17),[17,19],用频率分布直方图表示如下:



假设用频率估计概率, 且每个学生参加课后活动的时间相互独立,

- (1) 估计全校学生一周参加课后活动的时间位于区间 [13,17) 的概率;
- (2) 从全校学生中随机选取 3 人, 记 ξ 表示这 3 人一周参加课后活动的时间在区间 [15,17) 的人数, 求 ξ 的分布列和数学期望 $E\xi$;
- (3) 设全校学生一周参加课后活动的时间的中位数估计值为 a、平均数的估计值为 b (计算平均数时,同组中的每个数据都用该组区间的中点值代替),请直接写出 a, b 的大小关系.
- 19. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的右顶点 A(2,0), P 为椭圆 C 上的动点, 且点 P 不 在 x 轴上, O 是坐标原点, $\triangle AOP$ 面积的最大值为 1.
 - (1) 求椭圆 C 的方程及离心率:
 - (2) 过点 H(-1,0) 的直线 PH 与椭圆 C 交于另一点 Q, 直线 AP, AQ 分别与 y 轴相交于点

- E, F. 当 |EF| = 2 时, 求直线 PH 的方程.
- 20. 己知函数 $f(x) = \sin x + e^x + a \ln(x+1)$.
 - (1) 求曲线 y = f(x) 在 x = 0 处的切线方程;
 - (2) 当 $a \le -2$ 时, 求函数 f(x) 在 (-1,0] 上的最小值;
 - (3) 写出实数 a 的一个值, 使得 $f(x) \ge 1$ 恒成立, 并证明.
- 21. 已知 $Q: a_1, a_2, \dots, a_k$ 为有穷正整数数列,且 $a_1 \le a_2 \le \dots \le a_k$,集合 $X = \{-1, 0, 1\}$. 若存在 $x_i \in X$, $i = 1, 2, \dots, k$,使得 $x_1a_1 + x_2a_2 + \dots + x_ka_k = t$,则称 t 为 k 可表数,称集合 $T = \{t \mid t = x_1a_1 + x_2a_2 + \dots + x_ka_k, x_i \in X, i = 1, 2, \dots, k\}$ 为 k 可表集.
 - (1) 若 k = 10, $a_i = 2^{i-1}$, $i = 1, 2, \dots, k$, 判定 31, 1024 是否为 k -可表数, 并说明理由;
 - (2) 若 $\{1, 2, \dots, n\} \subseteq T$, 证明: $n \leqslant \frac{3^k 1}{2}$;
 - (3) 设 $a_i = 3^{i-1}, i = 1, 2, \dots, k$, 若 $\{1, 2, \dots, 2024\} \subseteq T$, 求 k 的最小值.

北京一零一中 2023-2024 学年度第二学期高三数学统考四

—,	选择题共10小题。	在每小题列出的四个选项中,	选出符合题目要求的一项。
----	-----------	---------------	--------------

1.	□知集合 $P = \{x \mid -1 \le x \le 1\}, M = \{-a, a\}, \exists P \cup M = P, 则头剱 a 的取诅氾固定 ($			
	$(A) \{ a \mid -1 \leqslant a \leqslant 1 \}$		(B) $\{a \mid -1 < a < 1\}$	
	(C) $\{a \mid -1 < a < 1 \perp \}$	$a \neq 0$	(D) $\{a \mid -1 \leqslant a \leqslant 1\}$	$\mathbb{H} \ a \neq 0$
	【参考答案】D			
	由 $P \cup M = P$ 得 M	$\subseteq P$, 所以 $a \in P$, -	$-a \in P$, $\mathbb{P} -1 \leqslant -a \leqslant$	≦ 1, 且 -1 ≤ a ≤ 1, 解得
$-1 \leq a \leq 1$, 又因为 $-a \neq a$, 所以 $a \neq 0$, 故选 D.				
2. 已知 i 是虚数单位, 若 $z = \frac{i + a}{1 + i}$ 为纯虚数, 则实数 $a = ($)				
	(A) 1	(B) -1	(C) 2	(D) -2
	【参考答案】B			
	因为 $z = \frac{\mathbf{i} + a}{1 + \mathbf{i}} =$	$\frac{(a+i)(1-i)}{(1+i)(1-i)} = \frac{a-1}{(1-i)}$	$\frac{-a\mathbf{i}+\mathbf{i}-\mathbf{i}^2}{2} = \frac{a+1}{2} +$	$+\frac{1-a}{2}$ i 为纯虚数, 所以
	$\begin{cases} \frac{a+1}{2} = 0, \\ \frac{1-a}{2} \neq 0, \end{cases}$ 所以 a	a = -1.		
3.	在 $(\sqrt{x} - \frac{1}{2}x)^n$ 的展	开式中,第4项和第	5 项的二项式系数相等	等, 则展开式中 <i>x</i> ⁵ 的系数

Į 为() (A) $\frac{35}{8}$ (B) $-\frac{35}{8}$ (C) $\frac{9}{2}$ (D) $-\frac{9}{2}$

(A)
$$\frac{35}{8}$$

(B)
$$-\frac{35}{8}$$

(C)
$$\frac{9}{2}$$

(D)
$$-\frac{9}{2}$$

【参考答案】B

4. 函数 $f(x)=2^x+x, g(x)=\log_2 x+x, h(x)=\sqrt{x}+x$ 的零点分别为 a,b,c,则 a,b,c 的大小 顺序为()

(A)
$$a > b > c$$
 (B) $b > a > c$ (C) $b > c > a$ (D) $c > a > b$

(B)
$$b > a > 0$$

(C)
$$b > c > a$$

(D)
$$c > a > b$$

【参考答案】(2024 丰台高一上期末 7) C

5. 已知向量 $\overrightarrow{BA} = (\frac{1}{2}, \frac{\sqrt{3}}{2}), \overrightarrow{BC} = (\frac{\sqrt{3}}{2}, \frac{1}{2}), 则点 A 到直线 BC 的距离为 ()$

(A)
$$\frac{1}{2}$$

(C)
$$\sqrt{3}$$

(D)
$$\frac{\sqrt{3}}{2}$$

【参考答案】A

由题意得
$$\cos \angle ABC = \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{|\overrightarrow{BA}||\overrightarrow{BC}|} = \frac{\frac{1}{2} \times \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \times \frac{1}{2}}{1 \times 1} = \frac{\sqrt{3}}{2}$$
, 因为 $0^{\circ} < \angle ABC < 180^{\circ}$, 所以 $\angle ABC = 30^{\circ}$, 又因为 $|\overrightarrow{BA}| = 1$, 所以点 A 到 BC 的距离为 $|\overrightarrow{BA}| \sin \angle ABC = \frac{1}{2}$.

6. 设 α , β 是三角形的两个内角, 下列结论中正确的是(

(A) 若
$$\alpha + \beta < \frac{\pi}{2}$$
, 则 $\sin \alpha + \sin \beta < \sqrt{2}$

(A) 若
$$\alpha + \beta < \frac{\pi}{2}$$
, 则 $\sin \alpha + \sin \beta < \sqrt{2}$ (B) 若 $\alpha + \beta < \frac{\pi}{2}$, 则 $\cos \alpha + \cos \beta < \sqrt{2}$

(C) 若
$$\alpha + \beta > \frac{\pi}{2}$$
, 则 $\sin \alpha + \sin \beta > 1$ (D) 若 $\alpha + \beta > \frac{\pi}{2}$, 则 $\cos \alpha + \cos \beta > 1$

(D) 若
$$\alpha + \beta > \frac{\pi}{2}$$
, 则 $\cos \alpha + \cos \beta > 1$

【参考答案】(2020 东城高三上期末 7) A

- 7. 已知直线 l: y = mx m 1, P 为圆 $C: x^2 + y^2 4x 2y + 1 = 0$ 上一动点, 设 P 到直线 l 距 离的最大值为 d(m), 当 d(m) 最大时, m 的值为 (
 - $(A) \frac{1}{2}$
- (B) $-\frac{3}{2}$
- (D) 2

【参考答案】(2022 东城高三上期末 8) A

- 8. 已知 $\{a_n\}$ 是无穷等比数列,则"存在 $n \in \mathbb{N}^*$, 使得 $a_{n+2} > a_{n+1} > a_n$ "是"对任意 $n \in \mathbb{N}^*$,均有 $a_{n+3} > a_n$ " 的 (
 - (A) 充分而不必要条件

(B) 必要而不充分条件

(C) 充分必要条件

(D) 既不充分也不必要条件

【参考答案】C

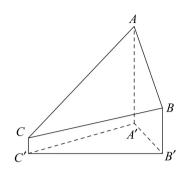
设 $\{a_n\}$ 公比为 q, 显然 $q \neq 0$, 且 $q \neq 1$.

以 $q^3 > 1$, 又 $a_n > 0$, 所以 $a_{n+3} - a_n > 0$, 所以 $a_{n+3} > a_n$; 若 $a_n < 0$, 则有 $\begin{cases} q^2 - 1 < 0, \\ q - 1 < 0, \end{cases}$ 解

得 -1 < q < 1. 又 q > 0, 所以 0 < q < 1, 此时 $a_{n+3} - a_n = a_n(q^3 - 1)$. 因为 0 < q < 1, 所以 $q^3 < 1$, 又 $a_n < 0$, 所以 $a_{n+3} - a_n > 0$, 所以 $a_{n+3} > a_n$.

②因为 $a_{n+3} > a_n$, 所以 $a_{n+3} - a_n = a_n(q^3 - 1) > 0$. 因为 q 是常数, 所以 a_n 符号恒定, 所以 q > 0. 若 $a_n > 0$, 则 $q^3 > 1$, 所以 q > 1, 显然此时有 $a_{n+2} > a_{n+1} > a_n$ 成立; 若 $a_n < 0$, 则 $q^3 < 1$, 此时有 -1 < q < 1, 所以 0 < q < 1, 此时有 $a_{n+2} > a_{n+1} > a_n$ 成立. 综上所述, "存在 $n \in \mathbb{N}^*$, 使得 $a_{n+2} > a_{n+1} > a_n$ " 是 "对任意 $n \in \mathbb{N}^*$, 均有 $a_{n+3} > a_n$ " 的充分必要条件.

9. 2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰 最新高程为 8848.86 (单位: m), 三角高程测量法是珠穆 高峰测量法之一, 右图是三角高程测量法的一个示意图, 现有 A, B, C 三点, A, B, C 在同一水平面上的投影 A', B', C' 满足 $\angle A'C'B' = 45^{\circ}$, $\angle A'B'C' = 60^{\circ}$, 由 C 点测得 B点的仰角为 15° , BB' 与 CC' 的差为 100, 由 B 点测得 A点的仰角为 45°, 则 A, C 两点到水平面 A'B'C' 的高度差



(D) 473

$$AA' - CC'$$
 约为 ($\sqrt{3} \approx 1.732$) (

【参考答案】(2021 高考全国甲理 8) B

过C作 $CH \perp BB'$, 过B作 $BD \perp AA'$,

故
$$AA' - CC' = AA' - (BB' - BH) = AA' - BB' + 100 = AD + 100,$$

由题. 易知 △ADB 为等腰直角三角形.

所以 AD = DB,

所以
$$AA' - CC' = DB + 100 = A'B' + 100$$
,

因为 $\angle BCH = 15^{\circ}$,

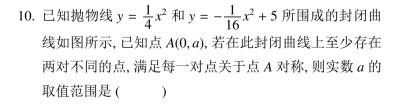
所以
$$CH = C'B' = \frac{100}{\tan 15^\circ}$$
,

在
$$\triangle A'B'C'$$
 中, 由正弦定理得: $\frac{A'B'}{\sin 45^{\circ}} = \frac{C'B'}{\sin 75^{\circ}} = \frac{100}{\tan 15^{\circ} \cos 15^{\circ}} \frac{100}{\sin 15^{\circ}}$

$$\vec{\text{m}} \sin 15^{\circ} = \sin(45^{\circ} - 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4},$$

所以
$$A'B' = \frac{100 \times 4 \times \frac{\sqrt{2}}{2}}{\sqrt{6} - \sqrt{2}} = 100(\sqrt{3} + 1) \approx 273,$$

所以 $AA' - CC' = A'B' + 100 \approx 373.$





(B)
$$[\frac{5}{2}, 4)$$

(A)
$$(1,4]$$
 (B) $[\frac{5}{2},4)$ (C) $[\frac{5}{2},3)$

【参考答案】(2015 西城一模理(改编)8)B

二、填空题共5小题。

11. 已知角 α 的终边经过点 (-4, 3), 则 $\cos(\frac{3\pi}{2} - \alpha)$ 的值是 ______.

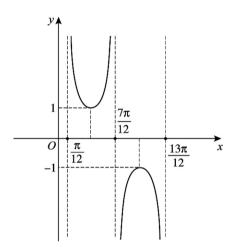
【参考答案】 $-\frac{3}{5}$.

12. 已知双曲线 $\frac{x^2}{m} + \frac{y^2}{3} = 1$ 的离心率为 2, 则实数 m =_____.

【参考答案】(2023 平谷一模 12) -9.

由题知, m < 0, 则方程 $\frac{x^2}{m} + \frac{y^2}{3} = 1$ 表示焦点在 y 轴上的双曲线, 所以 $a^2 = 3$, $b^2 = -m$, 则 $e = \frac{c}{a} = \sqrt{1 + (\frac{b}{a})^2} = \sqrt{1 - \frac{m}{3}} = 2$, 所以 $1 - \frac{m}{3} = 4$, 解得 m = -9.

13. 已知函数 $f(x) = \sin(\omega x + \varphi)$ ($\omega > 0$, $|\varphi| < \frac{\pi}{2}$), 若 $g(x) \cdot f(x) = 1$, 且函数 g(x) 的部分图象如图所示, 则 φ 等于 _______.



【参考答案】(2023 朝阳高三上期末 (改编) 7) $-\frac{\pi}{6}$.

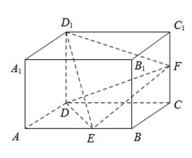
- 14. 设函数 $f(x) = \begin{cases} x^3 3x, & x \leq a, \\ -x, & x > a. \end{cases}$
 - (1) 若 a = 0, 则 f(x) 的最大值为 ______;
 - (2) 若 f(x) 无最大值, 则实数 a 的取值范围是 ______.

【参考答案】(2023 石景山一模 14) 2, $(-\infty, -\sqrt{2})$.

- 15. 如图, 在长方体 $ABCD A_1B_1C_1D_1$ 中, AB = 2, $AA_1 = AD = 1$, 动点 E, F 分别在线段 AB 和 CC_1 上. 给出下列四个结论:
 - ①四面体 D_1DEF 的体积为 $\frac{1}{3}$;
 - ② △D1EF 可能是等边三角形;
 - ③当 $D_1E \perp DF$ 时, $D_1F \leqslant EF$;
 - ④有且仅有两组 E, F, 使得三棱锥 $D_1 DEF$ 的四个面均为直角三角形.

其中所有正确结论的序号是_____

【参考答案】(2023 昌平二模 (改编) 15) ①③.



三、解答题共6小题。解答应写出文字说明、演算步骤或证明过程。

- 16. 已知函数 $f(x) = \cos(2x \frac{\pi}{3}) + 2\sin(x \frac{\pi}{4})\sin(x + \frac{\pi}{4})$.
 - (1) 求函数 f(x) 的最小正周期和图象的对称轴方程;
 - (2) 求函数 f(x) 在区间 $[-\frac{\pi}{12}, \frac{\pi}{2}]$ 上的最值.

【参考答案】

所以函数 f(x) 的最小正周期 $T = \frac{2\pi}{\omega} = \frac{2\pi}{2} = \pi$,

图象的对称轴方程为 $x = \frac{\pi}{3} + \frac{k\pi}{2}$ $(k \in \mathbf{Z})$.

(2) 因为
$$-\frac{\pi}{12} \leqslant x \leqslant \frac{\pi}{2}$$
,所以 $-\frac{\pi}{3} \leqslant 2x - \frac{\pi}{6} \leqslant \frac{5\pi}{6}$,

所以当 $x = \frac{\pi}{3}$ 时, f(x) 取最大值 $f(\frac{\pi}{3}) = 1$, 当 $x = -\frac{\pi}{12}$ 时, f(x) 取最小值 $f(-\frac{\pi}{12}) = -\frac{\sqrt{3}}{2}$.

17. 如图, 在四棱锥 P-ABCD 中, 底面 ABCD 是边长为 1 的正方形, Q 为棱 PD 的中点.

- (1) 求证: PB // 平面 ACQ;
- (2) 若 $BA \perp PD$, 再从条件①、条件②、条件③中选择若干个作为已知, 使四棱锥 P ABCD 唯一确定, 并求:
- (i) 直线 PC 与平面 ACO 所成角的正弦值
- (ii) 点 *P* 到平面 *ACQ* 的距离.

条件①: 二面角 P-CD-A 的大小为 45°;

条件②: $PD = \sqrt{2}$

条件③: AQ ⊥ PC.

【参考答案】(2023 房山高三上期末(改编)17)

(1) 连接 BD, 交 AC 于 O, 连接 OO,

底面 ABCD 是正方形, 故 O 是 BD 的中点,

又因为O为棱PD的中点,

所以, 在 △PBD 中 OO // PB,

所以 PB // 平面 ACQ.

(2) 选(1)(2):

因为四边形 ABCD 是正方形,

所以 $BA \perp AD$, $AD \perp CD$, $BA \parallel CD$,

又因为 $BA \perp PD$, 所以 $CD \perp PD$.

因为二面角 P-CD-A 的大小为 45° , 平面 $PAD\cap$ 平面 ABCD=CD, $AD\perp CD$, $PD\perp CD$, 所以 $\angle ADP=45^\circ$.

在 $\triangle PAD$ 中, $PA^2 = AD^2 + PD^2 - 2 \cdot AD \cdot PD \cos \angle ADP = 1$,

所以 $PA^2 + AD^2 = PD^2$,

故 $PA \perp AD$.

又因为 $BA \perp AD$, $BA \perp PD$, $AD \cap PD = D$, AD、 $PD \subset$ 平面 PAD,

所以 $BA \perp$ 平面 PAD,

选(1)(3):

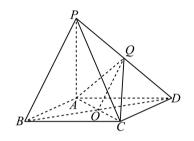
因为四边形 ABCD 是正方形、

所以 $BA \perp AD$, $AD \perp CD$, $BA \parallel CD$,

又因为 $BA \perp PD$, 所以 $CD \perp PD$,

因为二面角 P-CD-A 的大小为 45° , 平面 $PAD\cap$ 平面 ABCD=CD, $AD\perp CD$, $PD\perp CD$, 所以 $\angle ADP=45^\circ$.





因为 $CD \perp PD$, $CD \perp AD$, $AD \cap PD = D$, $AD \setminus PD \subset$ 平面 PAD,

所以 $CD \perp$ 平面 PAD,

又因为 $AQ \subset$ 平面PAD, 所以 $CD \perp AQ$,

又因为 $AQ \perp PC$, $PC \cap CD = C$, $PC \setminus CD \subset$ 平面PCD,

所以 $AO \perp$ 平面PCD.

因为 $PD \subset$ 平面 PCD, 所以 $AQ \perp PD$,

又因为Q为PD中点,所以PA = AD,

所以 $\angle APD = \angle ADP = 45^{\circ}$,

所以 $\angle PAD = 90^{\circ}$, 即 $PA \perp AD$,

因为 BA // CD, CD ⊥ 平面 PAD,

所以 $BA \perp$ 平面 PAD,

选②③:

因为四边形 ABCD 是正方形,

所以 $AD \perp CD$, $BA \parallel CD$,

因为 $CD \perp PD$, $CD \perp AD$, $AD \cap PD = D$, $AD \cap PD \subset PD \cap PD$,

所以 $CD \perp$ 平面 PAD.

又因为 $AO \subset$ 平面PAD, 所以 $CD \perp AO$,

又因为 $AO \perp PC$, $PC \cap CD = C$, PC、 $CD \subset$ 平面PCD,

所以 $AQ \perp$ 平面 PCD,

因为 $PD \subset$ 平面 PCD, 所以 $AQ \perp PD$,

又因为Q为PD中点,所以PA = AD = 1,

在 $\triangle PAD$ 中, $PA^2 + AD^2 = PD^2$.

故 $PA \perp AD$,

因为 BA // CD, CD ⊥ 平面 PAD,

所以 $BA \perp$ 平面 PAD,

选①②③同上.

以 A 为原点, AB, AD, AP 为 x, y, z 轴建立空间直角坐标系,

则 A(0,0,0), C(1,1,0), D(0,1,0), $Q(0,\frac{1}{2},\frac{1}{2})$, P(0,0,1),

故
$$\overrightarrow{AQ}=(0,\frac{1}{2},\frac{1}{2}),\overrightarrow{AC}=(1,1,0),\overrightarrow{PC}=(1,1,-1),$$

令
$$\mathbf{m} = (x, y, z)$$
 为面 ACQ 的一个法向量,则
$$\begin{cases} \mathbf{m} \cdot \overrightarrow{AQ} = \frac{1}{2}y + \frac{1}{2}z = 0, \\ \mathbf{m} \cdot \overrightarrow{AC} = x + y = 0. \end{cases}$$

所以
$$|\cos(m, \overrightarrow{PC})| = \frac{|m \cdot \overrightarrow{PC}|}{|m| |\overrightarrow{PC}|} = \frac{1}{\sqrt{3} \times \sqrt{3}} = \frac{1}{3}$$
,

即直线 PC 与平面 ACQ 所成角的正弦值为 $\frac{1}{3}$,

所以点 P 到平面 ACQ 的距离 $\frac{1}{3}|\overrightarrow{PC}| = \frac{\sqrt{3}}{3}$. 以 A 为原点, AB, AD, AP 为 x、 y、 z 轴建立空间直角坐标系,

则
$$A(0,0,0)$$
, $C(1,1,0)$, $D(0,1,0)$, $Q(0,\frac{1}{2},\frac{1}{2})$, $P(0,0,1)$,

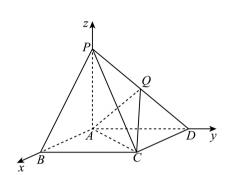
故
$$\overrightarrow{AQ} = (0, \frac{1}{2}, \frac{1}{2}), \overrightarrow{AC} = (1, 1, 0), \overrightarrow{PC} = (1, 1, -1),$$
令 $m = (x, y, z)$ 为面 ACQ 的一个法向量,则
$$\begin{cases} m \cdot \overrightarrow{AQ} = \frac{1}{2}y + \frac{1}{2}z = 0, \\ m \cdot \overrightarrow{AC} = x + y = 0. \end{cases}$$

$$♦ x = 1, ∅ m = (1, -1, 1),$$

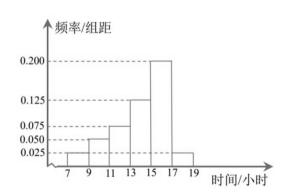
所以
$$|\cos\langle m, \overrightarrow{PC}\rangle| = \frac{|m \cdot \overrightarrow{PC}|}{|m| |\overrightarrow{PC}|} = \frac{1}{\sqrt{3} \times \sqrt{3}} = \frac{1}{3}$$
,即

直线 PC 与平面 ACQ 所成角的正弦值为 $\frac{1}{3}$,

所以点 P 到平面 ACQ 的距离 $\frac{1}{3}|\overrightarrow{PC}| = \frac{\sqrt{3}}{3}$.



18. "双减" 政策执行以来,中学生有更多的时间参加志愿服务和体育锻炼等课后活动.某校为了解学生课后活动的情况,从全校学生中随机选取 100 人,统计了他们一周参加课后活动的时间(单位:小时),分别位于区间[7,9),[9,11),[11,13),[13,15),[15,17),[17,19],用频率分布直方图表示如下:



假设用频率估计概率, 且每个学生参加课后活动的时间相互独立,

- (1) 估计全校学生一周参加课后活动的时间位于区间 [13,17) 的概率;
- (2) 从全校学生中随机选取 3 人, 记 ξ 表示这 3 人一周参加课后活动的时间在区间 [15,17)

的人数, 求 ε 的分布列和数学期望 $E\varepsilon$;

(3) 设全校学生一周参加课后活动的时间的中位数估计值为 a、平均数的估计值为 b (计 算平均数时, 同组中的每个数据都用该组区间的中点值代替), 请直接写出 a, b 的大小关 系.

【参考答案】(2023 东城高三上期末(改编)18)

(1) 根据频率分布直方图, 可得学生一周参加课后活动的时间位于区间 [13,17] 的频率为 $(0.125 + 0.200) \times 2 = 0.65$,

因此估计全校学生一周参加课后活动的时间位于区间 [13,17] 的概率为 0.65.

(2) 从全校学生中随机选取 1 人, 其一周参加课后活动的时间在区间 [15, 17] 的概率为 0.4. 因此 $\xi \sim B(3,0.4)$.

$$P(\xi = 0) = (1 - 0.4)^3 = 0.216, P(\xi = 1) = C_3^1 \times 0.4^1 \times (1 - 0.4)^2 = 0.432,$$

$$P(\xi = 2) = C_3^2 \times 0.4^2 \times (1 - 0.4)^1 = 0.288, P(\xi = 3) = 0.4^3 = 0.064.$$
Find ξ the field ξ is

则 ε 的分布列为:

ξ	0	1	2	3
P	0.216	0.432	0.288	0.064

$$E\xi = 0 \times 0.216 + 1 \times 0.432 + 2 \times 0.288 + 3 \times 0.064 = 1.2.$$

(3) b < a.

- 19. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的右顶点 A(2,0), P 为椭圆 C 上的动点, 且点 P 不 在 x 轴上, O 是坐标原点, $\triangle AOP$ 面积的最大值为 1.
 - (1) 求椭圆 C 的方程及离心率:
 - (2) 过点 H(-1,0) 的直线 PH 与椭圆 C 交于另一点 Q, 直线 AP, AQ 分别与 y 轴相交于点 E, F. 当 |EF| = 2 时, 求直线 PH 的方程.

【参考答案】(2023 朝阳高三上期末 19)

(1) 因为 $\triangle AOP$ 面积的最大值为 $\frac{1}{2}ab$, 所以 $\frac{1}{2}ab = 1$.

又因为
$$a = 2$$
, $c^2 = a^2 - b^2$, 所以 $b = 1$, $c = \sqrt{3}$.

所以椭圆 C 的方程为 $\frac{x^2}{4} + y^2 = 1$, 离心率为 $\frac{\sqrt{3}}{2}$.

(2) ①当直线 PH 的斜率不存在时, 直线 PH 的方程为 x = -1. 显然 $\triangle APO \sim \triangle AEF$.

因为
$$|PQ| = \sqrt{3}$$
, 所以 $|EF| = \frac{2}{3}|PQ| = \frac{2\sqrt{3}}{3} \neq 2$. 不合题意.

②当直线 PH 的斜率存在时, 设直线 PH 的方程为 v = k(x + 1).

由
$$\begin{cases} y = k(x+1), \\ x^2 + 4y^2 = 4 \end{cases}$$
 得 $(1 + 4k^2)x^2 + 8k^2x + (4k^2 - 4) = 0.$

显然 $\Lambda > 0$.

设
$$P(x_1, y_1)$$
, $Q(x_2, y_2)$, 且 $x_1 \neq \pm 2$, 则 $x_1 + x_2 = -\frac{8k^2}{1 + 4k^2}$, $x_1x_2 = \frac{4k^2 - 4}{1 + 4k^2}$.

直线 AP 的方程为
$$y = \frac{y_1}{x_1 - 2}(x - 2)$$
.

令
$$x = 0$$
, 得点 E 的纵坐标 $y_E = \frac{-2y_1}{r_1 - 2}$, 则 $E(0, \frac{-2y_1}{r_1 - 2})$.

直线
$$AQ$$
 的方程为 $y = \frac{y_2}{x_2 - 2}(x - 2)$.

同理可得 $F(0, \frac{-2y_2}{x_2-2})$.

所以
$$|EF| = \left| \frac{-2y_1}{x_1 - 2} - \frac{-2y_2}{x_2 - 2} \right| = 2 \left| \frac{y_2(x_1 - 2) - y_1(x_2 - 2)}{(x_1 - 2)(x_2 - 2)} \right|$$

= $2 \left| \frac{k(x_2 + 1)(x_1 - 2) - k(x_1 + 1)(x_2 - 2)}{(x_1 - 2)(x_2 - 2)} \right|$
= $6|k| \cdot \left| \frac{x_1 - x_2}{x_1 x_2 - 2(x_1 + x_2) + 4} \right| = 2.$

所以 $3|k| \cdot |x_1 - x_2| = |x_1x_2 - 2(x_1 + x_2) + 4|$.

可得
$$3|k|\sqrt{(-\frac{8k^2}{1+4k^2})^2-4\times\frac{4k^2-4}{1+4k^2}}=\left|\frac{4k^2-4}{1+4k^2}+2\times\frac{8k^2}{1+4k^2}+4\right|.$$

化简得
$$3|k| \cdot \frac{4\sqrt{3k^2+1}}{1+4k^2} = \frac{36k^2}{1+4k^2}$$
. 解得 $k=\pm \frac{\sqrt{6}}{6}$.

所以直线 *PH* 的方程为 $x - \sqrt{6}y + 1 = 0$ 或 $x + \sqrt{6}y + 1 = 0$.

- 20. 己知函数 $f(x) = \sin x + e^x + a \ln(x+1)$.
 - (1) 求曲线 y = f(x) 在 x = 0 处的切线方程;
 - (2) 当 $a \le -2$ 时, 求函数 f(x) 在 (-1,0] 上的最小值;
 - (3) 写出实数 a 的一个值, 使得 $f(x) \ge 1$ 恒成立, 并证明.

【参考答案】

(1) 因为
$$f(x) = \sin x + e^x + a \ln(x+1)$$
, 所以 $f'(x) = \cos x + e^x + \frac{a}{x+1}$, 所以 $f'(0) = a+2$, $f(0) = 1$, 所以切线方程为 $y = (a+2)x+1$, 即 $(a+2)x-y+1=0$.

(2)
$$\stackrel{\text{def}}{=} a \leqslant -2 \text{ iff}, f(x) = \sin x + e^x + a \ln(x+1), f'(x) = \cos x + e^x + \frac{a}{x+1}.$$

当
$$x \in (-1,0]$$
 时, $\cos x + e^x \le 2$, $\frac{-a}{x+1} \ge 2$, 所以 $f'(x) \le 0$ 恒成立, $f(x)$ 单调递减.

所以
$$f(x)_{min} = f(0) = 1$$
.

(3)
$$a = -2$$
.

证明: 当
$$a = -2$$
 时, $f'(x) = \cos x + e^x - \frac{2}{x+1}$,

根据 (2), 当 $x \in (-1,0]$ 时, f(x) 单调递减.

当
$$x \in (0, +\infty)$$
 时, 设 $g(x) = \cos x + e^x - \frac{2}{x+1}$, 则 $g'(x) = e^x + \frac{2}{(x+1)^2} - \sin x$,

$$e^x + \frac{2}{(x+1)^2} - \sin x > 1 + \frac{2}{(x+1)^2} - 1 > 0$$
, 所以 $f'(x) = \cos x + e^x - \frac{2}{x+1}$ 单调递增,

$$f'(x) > f'(0) = 0$$
, 所以 $f(x)$ 单调递增.

综上所述, f(x) 在 (-1,0] 上单调递减, 在 $(0,+\infty)$ 上单调递增, 所以 $f(x) \geqslant f(0) = 1$.

- 21. 已知 $Q: a_1, a_2, \dots, a_k$ 为有穷正整数数列, 且 $a_1 \le a_2 \le \dots \le a_k$, 集合 $X = \{-1, 0, 1\}$. 若存在 $x_i \in X$, $i = 1, 2, \dots, k$, 使得 $x_1 a_1 + x_2 a_2 + \dots + x_k a_k = t$, 则称 t 为 k 可表数, 称集合 $T = \{t \mid t = x_1 a_1 + x_2 a_2 + \dots + x_k a_k, x_i \in X, i = 1, 2, \dots, k\}$ 为 k 可表集.
 - (1) 若 k = 10, $a_i = 2^{i-1}$, $i = 1, 2, \dots, k$, 判定 31, 1024 是否为 k -可表数, 并说明理由;
 - (2) 若 $\{1, 2, \dots, n\} \subseteq T$, 证明: $n \leqslant \frac{3^k 1}{2}$;
 - (3) 设 $a_i = 3^{i-1}$, $i = 1, 2, \dots, k$, 若 $\{1, 2, \dots, 2024\} \subseteq T$, 求 k 的最小值.

【参考答案】(2024 昌平高三上期末 21)

(1) 因为
$$-1 \times 2^0 + 0 \times (2^1 + 2^2 + 2^3 + 2^4 + 2^6 + 2^7 + 2^8 + 2^9) + 1 \times 2^5 = 31$$
, 所以 31 为 k — 可表数.

又
$$x_1 \times 2^0 + x_2 \times 2^1 + \dots + x_{10} \times 2^9 \le 1 \times 2^0 + 1 \times 2^1 + \dots + 1 \times 2^9 = 2^{10} - 1 = 1023 < 1024$$
, 所以 1024 不是 $k -$ 可表数.

(2) 由题设,
$$0 = 0 \times a_1 + 0 \times a_2 + \dots + 0 \times a_k$$
, 所以 $0 \in T$.

若
$$s \in T$$
, 则存在 $x_i \in X$, $i = 1, 2, \dots, k$, 使得 $x_1a_1 + x_2a_2 + \dots + x_ka_k = s$,

所以
$$-(x_1a_1 + x_2a_2 + \cdots + x_ka_k) = -s$$
, 且 $-x_i \in X$.

所以 $-s \in T$.

因为 $\{1, 2, \dots, n\} \subseteq T$, 所以 $\{0, \pm 1, \pm 2, \dots, \pm n\} \subseteq T$.

所以集合 $\{0,\pm 1,\pm 2,\cdots,\pm n\}$ 中元素的个数不超过集合 T 的元素个数.

又因为集体 T 中元素个数至多为 3^k,

所以
$$2n + 1 \leq 3^k$$
, 即 $n \leq \frac{3^k - 1}{2}$.

(3) 由题设, 对于任意的
$$n \in \mathbb{N}^*$$
, 存在 $m \in \mathbb{N}^*$, 使 $\frac{3^{m-1}-1}{2} < n \leqslant \frac{3^m-1}{2}$.

又
$$x_1 \times 1 + x_2 \times 3 + x_3 \times 3^2 + \dots + x_{m-1} \times 3^{m-2} \le 1 \times 1 + 1 \times 3 + 1 \times 3^2 + \dots + 1 \times 3^{m-2} = \frac{3^{m-1} - 1}{2}$$
, 所以 $k > m - 1$. 所以 $k \ge m$.

$$\overrightarrow{\text{m}} \ 1 \times 1 + 1 \times 3 + 1 \times 3^2 + \dots + 1 \times 3^{m-1} = \frac{3^m - 1}{2},$$

即当
$$n = \frac{3^m - 1}{2}$$
 时, 取 $a_1 = 1, a_2 = 3, \dots, a_m = 3^{m-1}, n$ 为 m 一可表数.

因为
$$2(1+3+3^2+\cdots+3^{m-1})=2\times\frac{3^m-1}{2}=3^m-1$$
,

由三进制基本事实可知, 对任意的 $0 \le p \le 3^m - 1$, 存在 $r_i \in \{0, 1, 2\}, i = 1, 2, \cdots, m$,

 $\oint p = r_1 \times 3^0 + r_2 \times 3^1 + \dots + r_m \times 3^{m-1}.$

所以
$$p - \frac{3^m - 1}{2} = (r_1 \times 3^0 + r_2 \times 3^1 + \dots + r_m \times 3^{m-1}) - (3^0 + 3^1 + \dots + 3^{m-1})$$

=
$$(r_1 - 1) \times 3^0 + (r_2 - 1) \times 3^1 + \dots + (r_m - 1) \times 3^{m-1}$$
.

设
$$t = p - \frac{3^m - 1}{2}$$
, 则 $-\frac{3^m - 1}{2} \le t \le \frac{3^m - 1}{2}$,

由 p 任意性, 对任意的 $-\frac{3^m-1}{2} \leqslant t \leqslant \frac{3^m-1}{2}, t \in \mathbb{Z}$,

都有 $t = x_1 \times 3^0 + x_2 \times 3^1 + \dots + x_m \times 3^{m-1}, x_i \in \{-1, 0, 1\}, i = 1, 2, \dots, m.$

又因为 $n \leq \frac{3^m-1}{2}$, 所以对于任意的 $-n \leq t \leq n, t \in \mathbb{Z}$, t > m — 可表数.

综上, 可知 k 的最小值为 m, 其中 m 满足 $\frac{3^{m-1}-1}{2} < n \leq \frac{3^m-1}{2}$.

又因为当 n = 2024 时, $\frac{3^7 - 1}{2} < n \leqslant \frac{3^8 - 1}{2}$.

所以 k 的最小值为 8.